initial commit, 4.5 stable
Some checks failed
🔗 GHA / 📊 Static checks (push) Has been cancelled
🔗 GHA / 🤖 Android (push) Has been cancelled
🔗 GHA / 🍏 iOS (push) Has been cancelled
🔗 GHA / 🐧 Linux (push) Has been cancelled
🔗 GHA / 🍎 macOS (push) Has been cancelled
🔗 GHA / 🏁 Windows (push) Has been cancelled
🔗 GHA / 🌐 Web (push) Has been cancelled
Some checks failed
🔗 GHA / 📊 Static checks (push) Has been cancelled
🔗 GHA / 🤖 Android (push) Has been cancelled
🔗 GHA / 🍏 iOS (push) Has been cancelled
🔗 GHA / 🐧 Linux (push) Has been cancelled
🔗 GHA / 🍎 macOS (push) Has been cancelled
🔗 GHA / 🏁 Windows (push) Has been cancelled
🔗 GHA / 🌐 Web (push) Has been cancelled
This commit is contained in:
306
servers/rendering/renderer_rd/shaders/environment/sky.glsl
Normal file
306
servers/rendering/renderer_rd/shaders/environment/sky.glsl
Normal file
@@ -0,0 +1,306 @@
|
||||
#[vertex]
|
||||
|
||||
#version 450
|
||||
|
||||
#VERSION_DEFINES
|
||||
|
||||
layout(location = 0) out vec2 uv_interp;
|
||||
|
||||
layout(push_constant, std430) uniform Params {
|
||||
mat3 orientation;
|
||||
vec4 projection; // only applicable if not multiview
|
||||
vec3 position;
|
||||
float time;
|
||||
vec2 pad;
|
||||
float luminance_multiplier;
|
||||
float brightness_multiplier;
|
||||
}
|
||||
params;
|
||||
|
||||
void main() {
|
||||
vec2 base_arr[3] = vec2[](vec2(-1.0, -3.0), vec2(-1.0, 1.0), vec2(3.0, 1.0));
|
||||
uv_interp = base_arr[gl_VertexIndex];
|
||||
gl_Position = vec4(uv_interp, 0.0, 1.0);
|
||||
}
|
||||
|
||||
#[fragment]
|
||||
|
||||
#version 450
|
||||
|
||||
#VERSION_DEFINES
|
||||
|
||||
#ifdef USE_MULTIVIEW
|
||||
#extension GL_EXT_multiview : enable
|
||||
#define ViewIndex gl_ViewIndex
|
||||
#endif
|
||||
|
||||
#define M_PI 3.14159265359
|
||||
|
||||
layout(location = 0) in vec2 uv_interp;
|
||||
|
||||
layout(push_constant, std430) uniform Params {
|
||||
mat3 orientation;
|
||||
vec4 projection; // only applicable if not multiview
|
||||
vec3 position;
|
||||
float time;
|
||||
vec2 pad;
|
||||
float luminance_multiplier;
|
||||
float brightness_multiplier;
|
||||
}
|
||||
params;
|
||||
|
||||
#include "../samplers_inc.glsl"
|
||||
|
||||
layout(set = 0, binding = 1, std430) restrict readonly buffer GlobalShaderUniformData {
|
||||
vec4 data[];
|
||||
}
|
||||
global_shader_uniforms;
|
||||
|
||||
layout(set = 0, binding = 2, std140) uniform SkySceneData {
|
||||
mat4 combined_reprojection[2];
|
||||
mat4 view_inv_projections[2];
|
||||
vec4 view_eye_offsets[2];
|
||||
|
||||
bool volumetric_fog_enabled; // 4 - 4
|
||||
float volumetric_fog_inv_length; // 4 - 8
|
||||
float volumetric_fog_detail_spread; // 4 - 12
|
||||
float volumetric_fog_sky_affect; // 4 - 16
|
||||
|
||||
bool fog_enabled; // 4 - 20
|
||||
float fog_sky_affect; // 4 - 24
|
||||
float fog_density; // 4 - 28
|
||||
float fog_sun_scatter; // 4 - 32
|
||||
|
||||
vec3 fog_light_color; // 12 - 44
|
||||
float fog_aerial_perspective; // 4 - 48
|
||||
|
||||
float z_far; // 4 - 52
|
||||
uint directional_light_count; // 4 - 56
|
||||
uint pad1; // 4 - 60
|
||||
uint pad2; // 4 - 64
|
||||
}
|
||||
sky_scene_data;
|
||||
|
||||
struct DirectionalLightData {
|
||||
vec4 direction_energy;
|
||||
vec4 color_size;
|
||||
bool enabled;
|
||||
};
|
||||
|
||||
layout(set = 0, binding = 3, std140) uniform DirectionalLights {
|
||||
DirectionalLightData data[MAX_DIRECTIONAL_LIGHT_DATA_STRUCTS];
|
||||
}
|
||||
directional_lights;
|
||||
|
||||
#ifdef MATERIAL_UNIFORMS_USED
|
||||
/* clang-format off */
|
||||
layout(set = 1, binding = 0, std140) uniform MaterialUniforms {
|
||||
#MATERIAL_UNIFORMS
|
||||
} material;
|
||||
/* clang-format on */
|
||||
#endif
|
||||
|
||||
layout(set = 2, binding = 0) uniform textureCube radiance;
|
||||
#ifdef USE_CUBEMAP_PASS
|
||||
layout(set = 2, binding = 1) uniform textureCube half_res;
|
||||
layout(set = 2, binding = 2) uniform textureCube quarter_res;
|
||||
#elif defined(USE_MULTIVIEW)
|
||||
layout(set = 2, binding = 1) uniform texture2DArray half_res;
|
||||
layout(set = 2, binding = 2) uniform texture2DArray quarter_res;
|
||||
#else
|
||||
layout(set = 2, binding = 1) uniform texture2D half_res;
|
||||
layout(set = 2, binding = 2) uniform texture2D quarter_res;
|
||||
#endif
|
||||
|
||||
layout(set = 3, binding = 0) uniform texture3D volumetric_fog_texture;
|
||||
|
||||
#ifdef USE_CUBEMAP_PASS
|
||||
#define AT_CUBEMAP_PASS true
|
||||
#else
|
||||
#define AT_CUBEMAP_PASS false
|
||||
#endif
|
||||
|
||||
#ifdef USE_HALF_RES_PASS
|
||||
#define AT_HALF_RES_PASS true
|
||||
#else
|
||||
#define AT_HALF_RES_PASS false
|
||||
#endif
|
||||
|
||||
#ifdef USE_QUARTER_RES_PASS
|
||||
#define AT_QUARTER_RES_PASS true
|
||||
#else
|
||||
#define AT_QUARTER_RES_PASS false
|
||||
#endif
|
||||
|
||||
#GLOBALS
|
||||
|
||||
layout(location = 0) out vec4 frag_color;
|
||||
|
||||
#ifdef USE_DEBANDING
|
||||
// https://www.iryoku.com/next-generation-post-processing-in-call-of-duty-advanced-warfare
|
||||
vec3 interleaved_gradient_noise(vec2 pos) {
|
||||
const vec3 magic = vec3(0.06711056f, 0.00583715f, 52.9829189f);
|
||||
float res = fract(magic.z * fract(dot(pos, magic.xy))) * 2.0 - 1.0;
|
||||
return vec3(res, -res, res) / 255.0;
|
||||
}
|
||||
#endif
|
||||
|
||||
vec4 volumetric_fog_process(vec2 screen_uv) {
|
||||
#ifdef USE_MULTIVIEW
|
||||
vec4 reprojected = sky_scene_data.combined_reprojection[ViewIndex] * vec4(screen_uv * 2.0 - 1.0, 0.0, 1.0); // Unproject at the far plane
|
||||
vec3 fog_pos = vec3(reprojected.xy / reprojected.w, 1.0) * 0.5 + 0.5;
|
||||
#else
|
||||
vec3 fog_pos = vec3(screen_uv, 1.0);
|
||||
#endif
|
||||
|
||||
return texture(sampler3D(volumetric_fog_texture, SAMPLER_LINEAR_CLAMP), fog_pos);
|
||||
}
|
||||
|
||||
vec4 fog_process(vec3 view, vec3 sky_color) {
|
||||
vec3 fog_color = mix(sky_scene_data.fog_light_color, sky_color, sky_scene_data.fog_aerial_perspective);
|
||||
|
||||
if (sky_scene_data.fog_sun_scatter > 0.001) {
|
||||
vec4 sun_scatter = vec4(0.0);
|
||||
float sun_total = 0.0;
|
||||
for (uint i = 0; i < sky_scene_data.directional_light_count; i++) {
|
||||
vec3 light_color = directional_lights.data[i].color_size.xyz * directional_lights.data[i].direction_energy.w;
|
||||
float light_amount = pow(max(dot(view, directional_lights.data[i].direction_energy.xyz), 0.0), 8.0) * M_PI;
|
||||
fog_color += light_color * light_amount * sky_scene_data.fog_sun_scatter;
|
||||
}
|
||||
}
|
||||
|
||||
return vec4(fog_color, 1.0);
|
||||
}
|
||||
|
||||
// Eberly approximation from https://seblagarde.wordpress.com/2014/12/01/inverse-trigonometric-functions-gpu-optimization-for-amd-gcn-architecture/.
|
||||
// input [-1, 1] and output [0, PI]
|
||||
float acos_approx(float p_x) {
|
||||
float x = abs(p_x);
|
||||
float res = -0.156583f * x + (M_PI / 2.0);
|
||||
res *= sqrt(1.0f - x);
|
||||
return (p_x >= 0.0) ? res : M_PI - res;
|
||||
}
|
||||
|
||||
// Based on https://math.stackexchange.com/questions/1098487/atan2-faster-approximation
|
||||
// but using the Eberly coefficients from https://seblagarde.wordpress.com/2014/12/01/inverse-trigonometric-functions-gpu-optimization-for-amd-gcn-architecture/.
|
||||
float atan2_approx(float y, float x) {
|
||||
float a = min(abs(x), abs(y)) / max(abs(x), abs(y));
|
||||
float s = a * a;
|
||||
float poly = 0.0872929f;
|
||||
poly = -0.301895f + poly * s;
|
||||
poly = 1.0f + poly * s;
|
||||
poly = poly * a;
|
||||
|
||||
float r = abs(y) > abs(x) ? (M_PI / 2.0) - poly : poly;
|
||||
r = x < 0.0 ? M_PI - r : r;
|
||||
r = y < 0.0 ? -r : r;
|
||||
|
||||
return r;
|
||||
}
|
||||
|
||||
void main() {
|
||||
vec3 cube_normal;
|
||||
#ifdef USE_MULTIVIEW
|
||||
// In multiview our projection matrices will contain positional and rotational offsets that we need to properly unproject.
|
||||
vec4 unproject = vec4(uv_interp.x, uv_interp.y, 0.0, 1.0); // unproject at the far plane
|
||||
vec4 unprojected = sky_scene_data.view_inv_projections[ViewIndex] * unproject;
|
||||
cube_normal = unprojected.xyz / unprojected.w;
|
||||
|
||||
// Unproject will give us the position between the eyes, need to re-offset
|
||||
cube_normal += sky_scene_data.view_eye_offsets[ViewIndex].xyz;
|
||||
#else
|
||||
cube_normal.z = -1.0;
|
||||
cube_normal.x = (cube_normal.z * (-uv_interp.x - params.projection.x)) / params.projection.y;
|
||||
cube_normal.y = -(cube_normal.z * (uv_interp.y - params.projection.z)) / params.projection.w;
|
||||
#endif
|
||||
cube_normal = mat3(params.orientation) * cube_normal;
|
||||
cube_normal = normalize(cube_normal);
|
||||
|
||||
vec2 uv = uv_interp * 0.5 + 0.5;
|
||||
|
||||
vec2 panorama_coords = vec2(atan2_approx(cube_normal.x, -cube_normal.z), acos_approx(cube_normal.y));
|
||||
|
||||
if (panorama_coords.x < 0.0) {
|
||||
panorama_coords.x += M_PI * 2.0;
|
||||
}
|
||||
|
||||
panorama_coords /= vec2(M_PI * 2.0, M_PI);
|
||||
|
||||
vec3 color = vec3(0.0, 0.0, 0.0);
|
||||
float alpha = 1.0; // Only available to subpasses
|
||||
vec4 half_res_color = vec4(1.0);
|
||||
vec4 quarter_res_color = vec4(1.0);
|
||||
vec4 custom_fog = vec4(0.0);
|
||||
|
||||
#ifdef USE_CUBEMAP_PASS
|
||||
|
||||
#ifdef USES_HALF_RES_COLOR
|
||||
half_res_color = texture(samplerCube(half_res, SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP), cube_normal) / params.luminance_multiplier;
|
||||
#endif
|
||||
#ifdef USES_QUARTER_RES_COLOR
|
||||
quarter_res_color = texture(samplerCube(quarter_res, SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP), cube_normal) / params.luminance_multiplier;
|
||||
#endif
|
||||
|
||||
#else
|
||||
|
||||
#ifdef USES_HALF_RES_COLOR
|
||||
#ifdef USE_MULTIVIEW
|
||||
half_res_color = textureLod(sampler2DArray(half_res, SAMPLER_LINEAR_CLAMP), vec3(uv, ViewIndex), 0.0) / params.luminance_multiplier;
|
||||
#else
|
||||
half_res_color = textureLod(sampler2D(half_res, SAMPLER_LINEAR_CLAMP), uv, 0.0) / params.luminance_multiplier;
|
||||
#endif // USE_MULTIVIEW
|
||||
#endif // USES_HALF_RES_COLOR
|
||||
|
||||
#ifdef USES_QUARTER_RES_COLOR
|
||||
#ifdef USE_MULTIVIEW
|
||||
quarter_res_color = textureLod(sampler2DArray(quarter_res, SAMPLER_LINEAR_CLAMP), vec3(uv, ViewIndex), 0.0) / params.luminance_multiplier;
|
||||
#else
|
||||
quarter_res_color = textureLod(sampler2D(quarter_res, SAMPLER_LINEAR_CLAMP), uv, 0.0) / params.luminance_multiplier;
|
||||
#endif // USE_MULTIVIEW
|
||||
#endif // USES_QUARTER_RES_COLOR
|
||||
|
||||
#endif //USE_CUBEMAP_PASS
|
||||
|
||||
{
|
||||
#CODE : SKY
|
||||
}
|
||||
|
||||
frag_color.rgb = color;
|
||||
frag_color.a = alpha;
|
||||
|
||||
// Apply environment 'brightness' setting separately before fog to ensure consistent luminance.
|
||||
frag_color.rgb = frag_color.rgb * params.brightness_multiplier;
|
||||
|
||||
#if !defined(DISABLE_FOG) && !defined(USE_CUBEMAP_PASS)
|
||||
|
||||
// Draw "fixed" fog before volumetric fog to ensure volumetric fog can appear in front of the sky.
|
||||
if (sky_scene_data.fog_enabled) {
|
||||
vec4 fog = fog_process(cube_normal, frag_color.rgb);
|
||||
frag_color.rgb = mix(frag_color.rgb, fog.rgb, fog.a * sky_scene_data.fog_sky_affect);
|
||||
}
|
||||
|
||||
if (sky_scene_data.volumetric_fog_enabled) {
|
||||
vec4 fog = volumetric_fog_process(uv);
|
||||
frag_color.rgb = mix(frag_color.rgb, fog.rgb, fog.a * sky_scene_data.volumetric_fog_sky_affect);
|
||||
}
|
||||
|
||||
if (custom_fog.a > 0.0) {
|
||||
frag_color.rgb = mix(frag_color.rgb, custom_fog.rgb, custom_fog.a);
|
||||
}
|
||||
|
||||
#endif // DISABLE_FOG
|
||||
|
||||
// For mobile renderer we're multiplying by 0.5 as we're using a UNORM buffer.
|
||||
// For both mobile and clustered, we also bake in the exposure value for the environment and camera.
|
||||
frag_color.rgb = frag_color.rgb * params.luminance_multiplier;
|
||||
|
||||
// Blending is disabled for Sky, so alpha doesn't blend.
|
||||
// Alpha is used for subsurface scattering so make sure it doesn't get applied to Sky.
|
||||
if (!AT_CUBEMAP_PASS && !AT_HALF_RES_PASS && !AT_QUARTER_RES_PASS) {
|
||||
frag_color.a = 0.0;
|
||||
}
|
||||
|
||||
#ifdef USE_DEBANDING
|
||||
frag_color.rgb += interleaved_gradient_noise(gl_FragCoord.xy) * params.luminance_multiplier;
|
||||
#endif
|
||||
}
|
Reference in New Issue
Block a user