initial commit, 4.5 stable
Some checks failed
🔗 GHA / 📊 Static checks (push) Has been cancelled
🔗 GHA / 🤖 Android (push) Has been cancelled
🔗 GHA / 🍏 iOS (push) Has been cancelled
🔗 GHA / 🐧 Linux (push) Has been cancelled
🔗 GHA / 🍎 macOS (push) Has been cancelled
🔗 GHA / 🏁 Windows (push) Has been cancelled
🔗 GHA / 🌐 Web (push) Has been cancelled

This commit is contained in:
2025-09-16 20:46:46 -04:00
commit 9d30169a8d
13378 changed files with 7050105 additions and 0 deletions

View File

@@ -0,0 +1,313 @@
// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#pragma once
#include <Jolt/Geometry/Triangle.h>
#include <Jolt/Geometry/IndexedTriangle.h>
#include <Jolt/Geometry/Plane.h>
#include <Jolt/Math/Mat44.h>
JPH_NAMESPACE_BEGIN
/// Axis aligned box
class [[nodiscard]] AABox
{
public:
JPH_OVERRIDE_NEW_DELETE
/// Constructor
AABox() : mMin(Vec3::sReplicate(FLT_MAX)), mMax(Vec3::sReplicate(-FLT_MAX)) { }
AABox(Vec3Arg inMin, Vec3Arg inMax) : mMin(inMin), mMax(inMax) { }
AABox(DVec3Arg inMin, DVec3Arg inMax) : mMin(inMin.ToVec3RoundDown()), mMax(inMax.ToVec3RoundUp()) { }
AABox(Vec3Arg inCenter, float inRadius) : mMin(inCenter - Vec3::sReplicate(inRadius)), mMax(inCenter + Vec3::sReplicate(inRadius)) { }
/// Create box from 2 points
static AABox sFromTwoPoints(Vec3Arg inP1, Vec3Arg inP2) { return AABox(Vec3::sMin(inP1, inP2), Vec3::sMax(inP1, inP2)); }
/// Create box from indexed triangle
static AABox sFromTriangle(const VertexList &inVertices, const IndexedTriangle &inTriangle)
{
AABox box = sFromTwoPoints(Vec3(inVertices[inTriangle.mIdx[0]]), Vec3(inVertices[inTriangle.mIdx[1]]));
box.Encapsulate(Vec3(inVertices[inTriangle.mIdx[2]]));
return box;
}
/// Get bounding box of size FLT_MAX
static AABox sBiggest()
{
/// Max half extent of AABox is 0.5 * FLT_MAX so that GetSize() remains finite
return AABox(Vec3::sReplicate(-0.5f * FLT_MAX), Vec3::sReplicate(0.5f * FLT_MAX));
}
/// Comparison operators
bool operator == (const AABox &inRHS) const { return mMin == inRHS.mMin && mMax == inRHS.mMax; }
bool operator != (const AABox &inRHS) const { return mMin != inRHS.mMin || mMax != inRHS.mMax; }
/// Reset the bounding box to an empty bounding box
void SetEmpty()
{
mMin = Vec3::sReplicate(FLT_MAX);
mMax = Vec3::sReplicate(-FLT_MAX);
}
/// Check if the bounding box is valid (max >= min)
bool IsValid() const
{
return mMin.GetX() <= mMax.GetX() && mMin.GetY() <= mMax.GetY() && mMin.GetZ() <= mMax.GetZ();
}
/// Encapsulate point in bounding box
void Encapsulate(Vec3Arg inPos)
{
mMin = Vec3::sMin(mMin, inPos);
mMax = Vec3::sMax(mMax, inPos);
}
/// Encapsulate bounding box in bounding box
void Encapsulate(const AABox &inRHS)
{
mMin = Vec3::sMin(mMin, inRHS.mMin);
mMax = Vec3::sMax(mMax, inRHS.mMax);
}
/// Encapsulate triangle in bounding box
void Encapsulate(const Triangle &inRHS)
{
Vec3 v = Vec3::sLoadFloat3Unsafe(inRHS.mV[0]);
Encapsulate(v);
v = Vec3::sLoadFloat3Unsafe(inRHS.mV[1]);
Encapsulate(v);
v = Vec3::sLoadFloat3Unsafe(inRHS.mV[2]);
Encapsulate(v);
}
/// Encapsulate triangle in bounding box
void Encapsulate(const VertexList &inVertices, const IndexedTriangle &inTriangle)
{
for (uint32 idx : inTriangle.mIdx)
Encapsulate(Vec3(inVertices[idx]));
}
/// Intersect this bounding box with inOther, returns the intersection
AABox Intersect(const AABox &inOther) const
{
return AABox(Vec3::sMax(mMin, inOther.mMin), Vec3::sMin(mMax, inOther.mMax));
}
/// Make sure that each edge of the bounding box has a minimal length
void EnsureMinimalEdgeLength(float inMinEdgeLength)
{
Vec3 min_length = Vec3::sReplicate(inMinEdgeLength);
mMax = Vec3::sSelect(mMax, mMin + min_length, Vec3::sLess(mMax - mMin, min_length));
}
/// Widen the box on both sides by inVector
void ExpandBy(Vec3Arg inVector)
{
mMin -= inVector;
mMax += inVector;
}
/// Get center of bounding box
Vec3 GetCenter() const
{
return 0.5f * (mMin + mMax);
}
/// Get extent of bounding box (half of the size)
Vec3 GetExtent() const
{
return 0.5f * (mMax - mMin);
}
/// Get size of bounding box
Vec3 GetSize() const
{
return mMax - mMin;
}
/// Get surface area of bounding box
float GetSurfaceArea() const
{
Vec3 extent = mMax - mMin;
return 2.0f * (extent.GetX() * extent.GetY() + extent.GetX() * extent.GetZ() + extent.GetY() * extent.GetZ());
}
/// Get volume of bounding box
float GetVolume() const
{
Vec3 extent = mMax - mMin;
return extent.GetX() * extent.GetY() * extent.GetZ();
}
/// Check if this box contains another box
bool Contains(const AABox &inOther) const
{
return UVec4::sAnd(Vec3::sLessOrEqual(mMin, inOther.mMin), Vec3::sGreaterOrEqual(mMax, inOther.mMax)).TestAllXYZTrue();
}
/// Check if this box contains a point
bool Contains(Vec3Arg inOther) const
{
return UVec4::sAnd(Vec3::sLessOrEqual(mMin, inOther), Vec3::sGreaterOrEqual(mMax, inOther)).TestAllXYZTrue();
}
/// Check if this box contains a point
bool Contains(DVec3Arg inOther) const
{
return Contains(Vec3(inOther));
}
/// Check if this box overlaps with another box
bool Overlaps(const AABox &inOther) const
{
return !UVec4::sOr(Vec3::sGreater(mMin, inOther.mMax), Vec3::sLess(mMax, inOther.mMin)).TestAnyXYZTrue();
}
/// Check if this box overlaps with a plane
bool Overlaps(const Plane &inPlane) const
{
Vec3 normal = inPlane.GetNormal();
float dist_normal = inPlane.SignedDistance(GetSupport(normal));
float dist_min_normal = inPlane.SignedDistance(GetSupport(-normal));
return dist_normal * dist_min_normal <= 0.0f; // If both support points are on the same side of the plane we don't overlap
}
/// Translate bounding box
void Translate(Vec3Arg inTranslation)
{
mMin += inTranslation;
mMax += inTranslation;
}
/// Translate bounding box
void Translate(DVec3Arg inTranslation)
{
mMin = (DVec3(mMin) + inTranslation).ToVec3RoundDown();
mMax = (DVec3(mMax) + inTranslation).ToVec3RoundUp();
}
/// Transform bounding box
AABox Transformed(Mat44Arg inMatrix) const
{
// Start with the translation of the matrix
Vec3 new_min, new_max;
new_min = new_max = inMatrix.GetTranslation();
// Now find the extreme points by considering the product of the min and max with each column of inMatrix
for (int c = 0; c < 3; ++c)
{
Vec3 col = inMatrix.GetColumn3(c);
Vec3 a = col * mMin[c];
Vec3 b = col * mMax[c];
new_min += Vec3::sMin(a, b);
new_max += Vec3::sMax(a, b);
}
// Return the new bounding box
return AABox(new_min, new_max);
}
/// Transform bounding box
AABox Transformed(DMat44Arg inMatrix) const
{
AABox transformed = Transformed(inMatrix.GetRotation());
transformed.Translate(inMatrix.GetTranslation());
return transformed;
}
/// Scale this bounding box, can handle non-uniform and negative scaling
AABox Scaled(Vec3Arg inScale) const
{
return AABox::sFromTwoPoints(mMin * inScale, mMax * inScale);
}
/// Calculate the support vector for this convex shape.
Vec3 GetSupport(Vec3Arg inDirection) const
{
return Vec3::sSelect(mMax, mMin, Vec3::sLess(inDirection, Vec3::sZero()));
}
/// Get the vertices of the face that faces inDirection the most
template <class VERTEX_ARRAY>
void GetSupportingFace(Vec3Arg inDirection, VERTEX_ARRAY &outVertices) const
{
outVertices.resize(4);
int axis = inDirection.Abs().GetHighestComponentIndex();
if (inDirection[axis] < 0.0f)
{
switch (axis)
{
case 0:
outVertices[0] = Vec3(mMax.GetX(), mMin.GetY(), mMin.GetZ());
outVertices[1] = Vec3(mMax.GetX(), mMax.GetY(), mMin.GetZ());
outVertices[2] = Vec3(mMax.GetX(), mMax.GetY(), mMax.GetZ());
outVertices[3] = Vec3(mMax.GetX(), mMin.GetY(), mMax.GetZ());
break;
case 1:
outVertices[0] = Vec3(mMin.GetX(), mMax.GetY(), mMin.GetZ());
outVertices[1] = Vec3(mMin.GetX(), mMax.GetY(), mMax.GetZ());
outVertices[2] = Vec3(mMax.GetX(), mMax.GetY(), mMax.GetZ());
outVertices[3] = Vec3(mMax.GetX(), mMax.GetY(), mMin.GetZ());
break;
case 2:
outVertices[0] = Vec3(mMin.GetX(), mMin.GetY(), mMax.GetZ());
outVertices[1] = Vec3(mMax.GetX(), mMin.GetY(), mMax.GetZ());
outVertices[2] = Vec3(mMax.GetX(), mMax.GetY(), mMax.GetZ());
outVertices[3] = Vec3(mMin.GetX(), mMax.GetY(), mMax.GetZ());
break;
}
}
else
{
switch (axis)
{
case 0:
outVertices[0] = Vec3(mMin.GetX(), mMin.GetY(), mMin.GetZ());
outVertices[1] = Vec3(mMin.GetX(), mMin.GetY(), mMax.GetZ());
outVertices[2] = Vec3(mMin.GetX(), mMax.GetY(), mMax.GetZ());
outVertices[3] = Vec3(mMin.GetX(), mMax.GetY(), mMin.GetZ());
break;
case 1:
outVertices[0] = Vec3(mMin.GetX(), mMin.GetY(), mMin.GetZ());
outVertices[1] = Vec3(mMax.GetX(), mMin.GetY(), mMin.GetZ());
outVertices[2] = Vec3(mMax.GetX(), mMin.GetY(), mMax.GetZ());
outVertices[3] = Vec3(mMin.GetX(), mMin.GetY(), mMax.GetZ());
break;
case 2:
outVertices[0] = Vec3(mMin.GetX(), mMin.GetY(), mMin.GetZ());
outVertices[1] = Vec3(mMin.GetX(), mMax.GetY(), mMin.GetZ());
outVertices[2] = Vec3(mMax.GetX(), mMax.GetY(), mMin.GetZ());
outVertices[3] = Vec3(mMax.GetX(), mMin.GetY(), mMin.GetZ());
break;
}
}
}
/// Get the closest point on or in this box to inPoint
Vec3 GetClosestPoint(Vec3Arg inPoint) const
{
return Vec3::sMin(Vec3::sMax(inPoint, mMin), mMax);
}
/// Get the squared distance between inPoint and this box (will be 0 if in Point is inside the box)
inline float GetSqDistanceTo(Vec3Arg inPoint) const
{
return (GetClosestPoint(inPoint) - inPoint).LengthSq();
}
/// Bounding box min and max
Vec3 mMin;
Vec3 mMax;
};
JPH_NAMESPACE_END

View File

@@ -0,0 +1,224 @@
// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#pragma once
#include <Jolt/Geometry/OrientedBox.h>
JPH_NAMESPACE_BEGIN
/// Helper functions that process 4 axis aligned boxes at the same time using SIMD
/// Test if 4 bounding boxes overlap with 1 bounding box, splat 1 box
JPH_INLINE UVec4 AABox4VsBox(const AABox &inBox1, Vec4Arg inBox2MinX, Vec4Arg inBox2MinY, Vec4Arg inBox2MinZ, Vec4Arg inBox2MaxX, Vec4Arg inBox2MaxY, Vec4Arg inBox2MaxZ)
{
// Splat values of box 1
Vec4 box1_minx = inBox1.mMin.SplatX();
Vec4 box1_miny = inBox1.mMin.SplatY();
Vec4 box1_minz = inBox1.mMin.SplatZ();
Vec4 box1_maxx = inBox1.mMax.SplatX();
Vec4 box1_maxy = inBox1.mMax.SplatY();
Vec4 box1_maxz = inBox1.mMax.SplatZ();
// Test separation over each axis
UVec4 nooverlapx = UVec4::sOr(Vec4::sGreater(box1_minx, inBox2MaxX), Vec4::sGreater(inBox2MinX, box1_maxx));
UVec4 nooverlapy = UVec4::sOr(Vec4::sGreater(box1_miny, inBox2MaxY), Vec4::sGreater(inBox2MinY, box1_maxy));
UVec4 nooverlapz = UVec4::sOr(Vec4::sGreater(box1_minz, inBox2MaxZ), Vec4::sGreater(inBox2MinZ, box1_maxz));
// Return overlap
return UVec4::sNot(UVec4::sOr(UVec4::sOr(nooverlapx, nooverlapy), nooverlapz));
}
/// Scale 4 axis aligned boxes
JPH_INLINE void AABox4Scale(Vec3Arg inScale, Vec4Arg inBoxMinX, Vec4Arg inBoxMinY, Vec4Arg inBoxMinZ, Vec4Arg inBoxMaxX, Vec4Arg inBoxMaxY, Vec4Arg inBoxMaxZ, Vec4 &outBoundsMinX, Vec4 &outBoundsMinY, Vec4 &outBoundsMinZ, Vec4 &outBoundsMaxX, Vec4 &outBoundsMaxY, Vec4 &outBoundsMaxZ)
{
Vec4 scale_x = inScale.SplatX();
Vec4 scaled_min_x = scale_x * inBoxMinX;
Vec4 scaled_max_x = scale_x * inBoxMaxX;
outBoundsMinX = Vec4::sMin(scaled_min_x, scaled_max_x); // Negative scale can flip min and max
outBoundsMaxX = Vec4::sMax(scaled_min_x, scaled_max_x);
Vec4 scale_y = inScale.SplatY();
Vec4 scaled_min_y = scale_y * inBoxMinY;
Vec4 scaled_max_y = scale_y * inBoxMaxY;
outBoundsMinY = Vec4::sMin(scaled_min_y, scaled_max_y);
outBoundsMaxY = Vec4::sMax(scaled_min_y, scaled_max_y);
Vec4 scale_z = inScale.SplatZ();
Vec4 scaled_min_z = scale_z * inBoxMinZ;
Vec4 scaled_max_z = scale_z * inBoxMaxZ;
outBoundsMinZ = Vec4::sMin(scaled_min_z, scaled_max_z);
outBoundsMaxZ = Vec4::sMax(scaled_min_z, scaled_max_z);
}
/// Enlarge 4 bounding boxes with extent (add to both sides)
JPH_INLINE void AABox4EnlargeWithExtent(Vec3Arg inExtent, Vec4 &ioBoundsMinX, Vec4 &ioBoundsMinY, Vec4 &ioBoundsMinZ, Vec4 &ioBoundsMaxX, Vec4 &ioBoundsMaxY, Vec4 &ioBoundsMaxZ)
{
Vec4 extent_x = inExtent.SplatX();
ioBoundsMinX -= extent_x;
ioBoundsMaxX += extent_x;
Vec4 extent_y = inExtent.SplatY();
ioBoundsMinY -= extent_y;
ioBoundsMaxY += extent_y;
Vec4 extent_z = inExtent.SplatZ();
ioBoundsMinZ -= extent_z;
ioBoundsMaxZ += extent_z;
}
/// Test if 4 bounding boxes overlap with a point
JPH_INLINE UVec4 AABox4VsPoint(Vec3Arg inPoint, Vec4Arg inBoxMinX, Vec4Arg inBoxMinY, Vec4Arg inBoxMinZ, Vec4Arg inBoxMaxX, Vec4Arg inBoxMaxY, Vec4Arg inBoxMaxZ)
{
// Splat point to 4 component vectors
Vec4 point_x = Vec4(inPoint).SplatX();
Vec4 point_y = Vec4(inPoint).SplatY();
Vec4 point_z = Vec4(inPoint).SplatZ();
// Test if point overlaps with box
UVec4 overlapx = UVec4::sAnd(Vec4::sGreaterOrEqual(point_x, inBoxMinX), Vec4::sLessOrEqual(point_x, inBoxMaxX));
UVec4 overlapy = UVec4::sAnd(Vec4::sGreaterOrEqual(point_y, inBoxMinY), Vec4::sLessOrEqual(point_y, inBoxMaxY));
UVec4 overlapz = UVec4::sAnd(Vec4::sGreaterOrEqual(point_z, inBoxMinZ), Vec4::sLessOrEqual(point_z, inBoxMaxZ));
// Test if all are overlapping
return UVec4::sAnd(UVec4::sAnd(overlapx, overlapy), overlapz);
}
/// Test if 4 bounding boxes overlap with an oriented box
JPH_INLINE UVec4 AABox4VsBox(Mat44Arg inOrientation, Vec3Arg inHalfExtents, Vec4Arg inBoxMinX, Vec4Arg inBoxMinY, Vec4Arg inBoxMinZ, Vec4Arg inBoxMaxX, Vec4Arg inBoxMaxY, Vec4Arg inBoxMaxZ, float inEpsilon = 1.0e-6f)
{
// Taken from: Real Time Collision Detection - Christer Ericson
// Chapter 4.4.1, page 103-105.
// Note that the code is swapped around: A is the aabox and B is the oriented box (this saves us from having to invert the orientation of the oriented box)
// Compute translation vector t (the translation of B in the space of A)
Vec4 t[3] {
inOrientation.GetTranslation().SplatX() - 0.5f * (inBoxMinX + inBoxMaxX),
inOrientation.GetTranslation().SplatY() - 0.5f * (inBoxMinY + inBoxMaxY),
inOrientation.GetTranslation().SplatZ() - 0.5f * (inBoxMinZ + inBoxMaxZ) };
// Compute common subexpressions. Add in an epsilon term to
// counteract arithmetic errors when two edges are parallel and
// their cross product is (near) null (see text for details)
Vec3 epsilon = Vec3::sReplicate(inEpsilon);
Vec3 abs_r[3] { inOrientation.GetAxisX().Abs() + epsilon, inOrientation.GetAxisY().Abs() + epsilon, inOrientation.GetAxisZ().Abs() + epsilon };
// Half extents for a
Vec4 a_half_extents[3] {
0.5f * (inBoxMaxX - inBoxMinX),
0.5f * (inBoxMaxY - inBoxMinY),
0.5f * (inBoxMaxZ - inBoxMinZ) };
// Half extents of b
Vec4 b_half_extents_x = inHalfExtents.SplatX();
Vec4 b_half_extents_y = inHalfExtents.SplatY();
Vec4 b_half_extents_z = inHalfExtents.SplatZ();
// Each component corresponds to 1 overlapping OBB vs ABB
UVec4 overlaps = UVec4(0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff);
// Test axes L = A0, L = A1, L = A2
Vec4 ra, rb;
for (int i = 0; i < 3; i++)
{
ra = a_half_extents[i];
rb = b_half_extents_x * abs_r[0][i] + b_half_extents_y * abs_r[1][i] + b_half_extents_z * abs_r[2][i];
overlaps = UVec4::sAnd(overlaps, Vec4::sLessOrEqual(t[i].Abs(), ra + rb));
}
// Test axes L = B0, L = B1, L = B2
for (int i = 0; i < 3; i++)
{
ra = a_half_extents[0] * abs_r[i][0] + a_half_extents[1] * abs_r[i][1] + a_half_extents[2] * abs_r[i][2];
rb = Vec4::sReplicate(inHalfExtents[i]);
overlaps = UVec4::sAnd(overlaps, Vec4::sLessOrEqual((t[0] * inOrientation(0, i) + t[1] * inOrientation(1, i) + t[2] * inOrientation(2, i)).Abs(), ra + rb));
}
// Test axis L = A0 x B0
ra = a_half_extents[1] * abs_r[0][2] + a_half_extents[2] * abs_r[0][1];
rb = b_half_extents_y * abs_r[2][0] + b_half_extents_z * abs_r[1][0];
overlaps = UVec4::sAnd(overlaps, Vec4::sLessOrEqual((t[2] * inOrientation(1, 0) - t[1] * inOrientation(2, 0)).Abs(), ra + rb));
// Test axis L = A0 x B1
ra = a_half_extents[1] * abs_r[1][2] + a_half_extents[2] * abs_r[1][1];
rb = b_half_extents_x * abs_r[2][0] + b_half_extents_z * abs_r[0][0];
overlaps = UVec4::sAnd(overlaps, Vec4::sLessOrEqual((t[2] * inOrientation(1, 1) - t[1] * inOrientation(2, 1)).Abs(), ra + rb));
// Test axis L = A0 x B2
ra = a_half_extents[1] * abs_r[2][2] + a_half_extents[2] * abs_r[2][1];
rb = b_half_extents_x * abs_r[1][0] + b_half_extents_y * abs_r[0][0];
overlaps = UVec4::sAnd(overlaps, Vec4::sLessOrEqual((t[2] * inOrientation(1, 2) - t[1] * inOrientation(2, 2)).Abs(), ra + rb));
// Test axis L = A1 x B0
ra = a_half_extents[0] * abs_r[0][2] + a_half_extents[2] * abs_r[0][0];
rb = b_half_extents_y * abs_r[2][1] + b_half_extents_z * abs_r[1][1];
overlaps = UVec4::sAnd(overlaps, Vec4::sLessOrEqual((t[0] * inOrientation(2, 0) - t[2] * inOrientation(0, 0)).Abs(), ra + rb));
// Test axis L = A1 x B1
ra = a_half_extents[0] * abs_r[1][2] + a_half_extents[2] * abs_r[1][0];
rb = b_half_extents_x * abs_r[2][1] + b_half_extents_z * abs_r[0][1];
overlaps = UVec4::sAnd(overlaps, Vec4::sLessOrEqual((t[0] * inOrientation(2, 1) - t[2] * inOrientation(0, 1)).Abs(), ra + rb));
// Test axis L = A1 x B2
ra = a_half_extents[0] * abs_r[2][2] + a_half_extents[2] * abs_r[2][0];
rb = b_half_extents_x * abs_r[1][1] + b_half_extents_y * abs_r[0][1];
overlaps = UVec4::sAnd(overlaps, Vec4::sLessOrEqual((t[0] * inOrientation(2, 2) - t[2] * inOrientation(0, 2)).Abs(), ra + rb));
// Test axis L = A2 x B0
ra = a_half_extents[0] * abs_r[0][1] + a_half_extents[1] * abs_r[0][0];
rb = b_half_extents_y * abs_r[2][2] + b_half_extents_z * abs_r[1][2];
overlaps = UVec4::sAnd(overlaps, Vec4::sLessOrEqual((t[1] * inOrientation(0, 0) - t[0] * inOrientation(1, 0)).Abs(), ra + rb));
// Test axis L = A2 x B1
ra = a_half_extents[0] * abs_r[1][1] + a_half_extents[1] * abs_r[1][0];
rb = b_half_extents_x * abs_r[2][2] + b_half_extents_z * abs_r[0][2];
overlaps = UVec4::sAnd(overlaps, Vec4::sLessOrEqual((t[1] * inOrientation(0, 1) - t[0] * inOrientation(1, 1)).Abs(), ra + rb));
// Test axis L = A2 x B2
ra = a_half_extents[0] * abs_r[2][1] + a_half_extents[1] * abs_r[2][0];
rb = b_half_extents_x * abs_r[1][2] + b_half_extents_y * abs_r[0][2];
overlaps = UVec4::sAnd(overlaps, Vec4::sLessOrEqual((t[1] * inOrientation(0, 2) - t[0] * inOrientation(1, 2)).Abs(), ra + rb));
// Return if the OBB vs AABBs are intersecting
return overlaps;
}
/// Convenience function that tests 4 AABoxes vs OrientedBox
JPH_INLINE UVec4 AABox4VsBox(const OrientedBox &inBox, Vec4Arg inBoxMinX, Vec4Arg inBoxMinY, Vec4Arg inBoxMinZ, Vec4Arg inBoxMaxX, Vec4Arg inBoxMaxY, Vec4Arg inBoxMaxZ, float inEpsilon = 1.0e-6f)
{
return AABox4VsBox(inBox.mOrientation, inBox.mHalfExtents, inBoxMinX, inBoxMinY, inBoxMinZ, inBoxMaxX, inBoxMaxY, inBoxMaxZ, inEpsilon);
}
/// Get the squared distance between 4 AABoxes and a point
JPH_INLINE Vec4 AABox4DistanceSqToPoint(Vec4Arg inPointX, Vec4Arg inPointY, Vec4Arg inPointZ, Vec4Arg inBoxMinX, Vec4Arg inBoxMinY, Vec4Arg inBoxMinZ, Vec4Arg inBoxMaxX, Vec4Arg inBoxMaxY, Vec4Arg inBoxMaxZ)
{
// Get closest point on box
Vec4 closest_x = Vec4::sMin(Vec4::sMax(inPointX, inBoxMinX), inBoxMaxX);
Vec4 closest_y = Vec4::sMin(Vec4::sMax(inPointY, inBoxMinY), inBoxMaxY);
Vec4 closest_z = Vec4::sMin(Vec4::sMax(inPointZ, inBoxMinZ), inBoxMaxZ);
// Return the squared distance between the box and point
return Square(closest_x - inPointX) + Square(closest_y - inPointY) + Square(closest_z - inPointZ);
}
/// Get the squared distance between 4 AABoxes and a point
JPH_INLINE Vec4 AABox4DistanceSqToPoint(Vec3 inPoint, Vec4Arg inBoxMinX, Vec4Arg inBoxMinY, Vec4Arg inBoxMinZ, Vec4Arg inBoxMaxX, Vec4Arg inBoxMaxY, Vec4Arg inBoxMaxZ)
{
return AABox4DistanceSqToPoint(inPoint.SplatX(), inPoint.SplatY(), inPoint.SplatZ(), inBoxMinX, inBoxMinY, inBoxMinZ, inBoxMaxX, inBoxMaxY, inBoxMaxZ);
}
/// Test 4 AABoxes vs a sphere
JPH_INLINE UVec4 AABox4VsSphere(Vec4Arg inCenterX, Vec4Arg inCenterY, Vec4Arg inCenterZ, Vec4Arg inRadiusSq, Vec4Arg inBoxMinX, Vec4Arg inBoxMinY, Vec4Arg inBoxMinZ, Vec4Arg inBoxMaxX, Vec4Arg inBoxMaxY, Vec4Arg inBoxMaxZ)
{
// Test the distance from the center of the sphere to the box is smaller than the radius
Vec4 distance_sq = AABox4DistanceSqToPoint(inCenterX, inCenterY, inCenterZ, inBoxMinX, inBoxMinY, inBoxMinZ, inBoxMaxX, inBoxMaxY, inBoxMaxZ);
return Vec4::sLessOrEqual(distance_sq, inRadiusSq);
}
/// Test 4 AABoxes vs a sphere
JPH_INLINE UVec4 AABox4VsSphere(Vec3Arg inCenter, float inRadiusSq, Vec4Arg inBoxMinX, Vec4Arg inBoxMinY, Vec4Arg inBoxMinZ, Vec4Arg inBoxMaxX, Vec4Arg inBoxMaxY, Vec4Arg inBoxMaxZ)
{
return AABox4VsSphere(inCenter.SplatX(), inCenter.SplatY(), inCenter.SplatZ(), Vec4::sReplicate(inRadiusSq), inBoxMinX, inBoxMinY, inBoxMinZ, inBoxMaxX, inBoxMaxY, inBoxMaxZ);
}
JPH_NAMESPACE_END

View File

@@ -0,0 +1,200 @@
// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#pragma once
#include <Jolt/Geometry/AABox.h>
JPH_NAMESPACE_BEGIN
/// Clip inPolygonToClip against the positive halfspace of plane defined by inPlaneOrigin and inPlaneNormal.
/// inPlaneNormal does not need to be normalized.
template <class VERTEX_ARRAY>
void ClipPolyVsPlane(const VERTEX_ARRAY &inPolygonToClip, Vec3Arg inPlaneOrigin, Vec3Arg inPlaneNormal, VERTEX_ARRAY &outClippedPolygon)
{
JPH_ASSERT(inPolygonToClip.size() >= 2);
JPH_ASSERT(outClippedPolygon.empty());
// Determine state of last point
Vec3 e1 = inPolygonToClip[inPolygonToClip.size() - 1];
float prev_num = (inPlaneOrigin - e1).Dot(inPlaneNormal);
bool prev_inside = prev_num < 0.0f;
// Loop through all vertices
for (typename VERTEX_ARRAY::size_type j = 0; j < inPolygonToClip.size(); ++j)
{
// Check if second point is inside
Vec3Arg e2 = inPolygonToClip[j];
float num = (inPlaneOrigin - e2).Dot(inPlaneNormal);
bool cur_inside = num < 0.0f;
// In -> Out or Out -> In: Add point on clipping plane
if (cur_inside != prev_inside)
{
// Solve: (X - inPlaneOrigin) . inPlaneNormal = 0 and X = e1 + t * (e2 - e1) for X
Vec3 e12 = e2 - e1;
float denom = e12.Dot(inPlaneNormal);
if (denom != 0.0f)
outClippedPolygon.push_back(e1 + (prev_num / denom) * e12);
else
cur_inside = prev_inside; // Edge is parallel to plane, treat point as if it were on the same side as the last point
}
// Point inside, add it
if (cur_inside)
outClippedPolygon.push_back(e2);
// Update previous state
prev_num = num;
prev_inside = cur_inside;
e1 = e2;
}
}
/// Clip polygon versus polygon.
/// Both polygons are assumed to be in counter clockwise order.
/// @param inClippingPolygonNormal is used to create planes of all edges in inClippingPolygon against which inPolygonToClip is clipped, inClippingPolygonNormal does not need to be normalized
/// @param inClippingPolygon is the polygon which inClippedPolygon is clipped against
/// @param inPolygonToClip is the polygon that is clipped
/// @param outClippedPolygon will contain clipped polygon when function returns
template <class VERTEX_ARRAY>
void ClipPolyVsPoly(const VERTEX_ARRAY &inPolygonToClip, const VERTEX_ARRAY &inClippingPolygon, Vec3Arg inClippingPolygonNormal, VERTEX_ARRAY &outClippedPolygon)
{
JPH_ASSERT(inPolygonToClip.size() >= 2);
JPH_ASSERT(inClippingPolygon.size() >= 3);
VERTEX_ARRAY tmp_vertices[2];
int tmp_vertices_idx = 0;
for (typename VERTEX_ARRAY::size_type i = 0; i < inClippingPolygon.size(); ++i)
{
// Get edge to clip against
Vec3 clip_e1 = inClippingPolygon[i];
Vec3 clip_e2 = inClippingPolygon[(i + 1) % inClippingPolygon.size()];
Vec3 clip_normal = inClippingPolygonNormal.Cross(clip_e2 - clip_e1); // Pointing inward to the clipping polygon
// Get source and target polygon
const VERTEX_ARRAY &src_polygon = (i == 0)? inPolygonToClip : tmp_vertices[tmp_vertices_idx];
tmp_vertices_idx ^= 1;
VERTEX_ARRAY &tgt_polygon = (i == inClippingPolygon.size() - 1)? outClippedPolygon : tmp_vertices[tmp_vertices_idx];
tgt_polygon.clear();
// Clip against the edge
ClipPolyVsPlane(src_polygon, clip_e1, clip_normal, tgt_polygon);
// Break out if no polygon left
if (tgt_polygon.size() < 3)
{
outClippedPolygon.clear();
break;
}
}
}
/// Clip inPolygonToClip against an edge, the edge is projected on inPolygonToClip using inClippingEdgeNormal.
/// The positive half space (the side on the edge in the direction of inClippingEdgeNormal) is cut away.
template <class VERTEX_ARRAY>
void ClipPolyVsEdge(const VERTEX_ARRAY &inPolygonToClip, Vec3Arg inEdgeVertex1, Vec3Arg inEdgeVertex2, Vec3Arg inClippingEdgeNormal, VERTEX_ARRAY &outClippedPolygon)
{
JPH_ASSERT(inPolygonToClip.size() >= 3);
JPH_ASSERT(outClippedPolygon.empty());
// Get normal that is perpendicular to the edge and the clipping edge normal
Vec3 edge = inEdgeVertex2 - inEdgeVertex1;
Vec3 edge_normal = inClippingEdgeNormal.Cross(edge);
// Project vertices of edge on inPolygonToClip
Vec3 polygon_normal = (inPolygonToClip[2] - inPolygonToClip[0]).Cross(inPolygonToClip[1] - inPolygonToClip[0]);
float polygon_normal_len_sq = polygon_normal.LengthSq();
Vec3 v1 = inEdgeVertex1 + polygon_normal.Dot(inPolygonToClip[0] - inEdgeVertex1) * polygon_normal / polygon_normal_len_sq;
Vec3 v2 = inEdgeVertex2 + polygon_normal.Dot(inPolygonToClip[0] - inEdgeVertex2) * polygon_normal / polygon_normal_len_sq;
Vec3 v12 = v2 - v1;
float v12_len_sq = v12.LengthSq();
// Determine state of last point
Vec3 e1 = inPolygonToClip[inPolygonToClip.size() - 1];
float prev_num = (inEdgeVertex1 - e1).Dot(edge_normal);
bool prev_inside = prev_num < 0.0f;
// Loop through all vertices
for (typename VERTEX_ARRAY::size_type j = 0; j < inPolygonToClip.size(); ++j)
{
// Check if second point is inside
Vec3 e2 = inPolygonToClip[j];
float num = (inEdgeVertex1 - e2).Dot(edge_normal);
bool cur_inside = num < 0.0f;
// In -> Out or Out -> In: Add point on clipping plane
if (cur_inside != prev_inside)
{
// Solve: (inEdgeVertex1 - X) . edge_normal = 0 and X = e1 + t * (e2 - e1) for X
Vec3 e12 = e2 - e1;
float denom = e12.Dot(edge_normal);
Vec3 clipped_point = denom != 0.0f? e1 + (prev_num / denom) * e12 : e1;
// Project point on line segment v1, v2 so see if it falls outside if the edge
float projection = (clipped_point - v1).Dot(v12);
if (projection < 0.0f)
outClippedPolygon.push_back(v1);
else if (projection > v12_len_sq)
outClippedPolygon.push_back(v2);
else
outClippedPolygon.push_back(clipped_point);
}
// Update previous state
prev_num = num;
prev_inside = cur_inside;
e1 = e2;
}
}
/// Clip polygon vs axis aligned box, inPolygonToClip is assume to be in counter clockwise order.
/// Output will be stored in outClippedPolygon. Everything inside inAABox will be kept.
template <class VERTEX_ARRAY>
void ClipPolyVsAABox(const VERTEX_ARRAY &inPolygonToClip, const AABox &inAABox, VERTEX_ARRAY &outClippedPolygon)
{
JPH_ASSERT(inPolygonToClip.size() >= 2);
VERTEX_ARRAY tmp_vertices[2];
int tmp_vertices_idx = 0;
for (int coord = 0; coord < 3; ++coord)
for (int side = 0; side < 2; ++side)
{
// Get plane to clip against
Vec3 origin = Vec3::sZero(), normal = Vec3::sZero();
if (side == 0)
{
normal.SetComponent(coord, 1.0f);
origin.SetComponent(coord, inAABox.mMin[coord]);
}
else
{
normal.SetComponent(coord, -1.0f);
origin.SetComponent(coord, inAABox.mMax[coord]);
}
// Get source and target polygon
const VERTEX_ARRAY &src_polygon = tmp_vertices_idx == 0? inPolygonToClip : tmp_vertices[tmp_vertices_idx & 1];
tmp_vertices_idx++;
VERTEX_ARRAY &tgt_polygon = tmp_vertices_idx == 6? outClippedPolygon : tmp_vertices[tmp_vertices_idx & 1];
tgt_polygon.clear();
// Clip against the edge
ClipPolyVsPlane(src_polygon, origin, normal, tgt_polygon);
// Break out if no polygon left
if (tgt_polygon.size() < 3)
{
outClippedPolygon.clear();
return;
}
// Flip normal
normal = -normal;
}
}
JPH_NAMESPACE_END

View File

@@ -0,0 +1,498 @@
// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#pragma once
JPH_NAMESPACE_BEGIN
// Turn off fused multiply add instruction because it makes the equations of the form a * b - c * d inaccurate below
JPH_PRECISE_MATH_ON
/// Helper utils to find the closest point to a line segment, triangle or tetrahedron
namespace ClosestPoint
{
/// Compute barycentric coordinates of closest point to origin for infinite line defined by (inA, inB)
/// Point can then be computed as inA * outU + inB * outV
/// Returns false if the points inA, inB do not form a line (are at the same point)
inline bool GetBaryCentricCoordinates(Vec3Arg inA, Vec3Arg inB, float &outU, float &outV)
{
Vec3 ab = inB - inA;
float denominator = ab.LengthSq();
if (denominator < Square(FLT_EPSILON))
{
// Degenerate line segment, fallback to points
if (inA.LengthSq() < inB.LengthSq())
{
// A closest
outU = 1.0f;
outV = 0.0f;
}
else
{
// B closest
outU = 0.0f;
outV = 1.0f;
}
return false;
}
else
{
outV = -inA.Dot(ab) / denominator;
outU = 1.0f - outV;
}
return true;
}
/// Compute barycentric coordinates of closest point to origin for plane defined by (inA, inB, inC)
/// Point can then be computed as inA * outU + inB * outV + inC * outW
/// Returns false if the points inA, inB, inC do not form a plane (are on the same line or at the same point)
inline bool GetBaryCentricCoordinates(Vec3Arg inA, Vec3Arg inB, Vec3Arg inC, float &outU, float &outV, float &outW)
{
// Taken from: Real-Time Collision Detection - Christer Ericson (Section: Barycentric Coordinates)
// With p = 0
// Adjusted to always include the shortest edge of the triangle in the calculation to improve numerical accuracy
// First calculate the three edges
Vec3 v0 = inB - inA;
Vec3 v1 = inC - inA;
Vec3 v2 = inC - inB;
// Make sure that the shortest edge is included in the calculation to keep the products a * b - c * d as small as possible to preserve accuracy
float d00 = v0.LengthSq();
float d11 = v1.LengthSq();
float d22 = v2.LengthSq();
if (d00 <= d22)
{
// Use v0 and v1 to calculate barycentric coordinates
float d01 = v0.Dot(v1);
// Denominator must be positive:
// |v0|^2 * |v1|^2 - (v0 . v1)^2 = |v0|^2 * |v1|^2 * (1 - cos(angle)^2) >= 0
float denominator = d00 * d11 - d01 * d01;
if (denominator < 1.0e-12f)
{
// Degenerate triangle, return coordinates along longest edge
if (d00 > d11)
{
GetBaryCentricCoordinates(inA, inB, outU, outV);
outW = 0.0f;
}
else
{
GetBaryCentricCoordinates(inA, inC, outU, outW);
outV = 0.0f;
}
return false;
}
else
{
float a0 = inA.Dot(v0);
float a1 = inA.Dot(v1);
outV = (d01 * a1 - d11 * a0) / denominator;
outW = (d01 * a0 - d00 * a1) / denominator;
outU = 1.0f - outV - outW;
}
}
else
{
// Use v1 and v2 to calculate barycentric coordinates
float d12 = v1.Dot(v2);
float denominator = d11 * d22 - d12 * d12;
if (denominator < 1.0e-12f)
{
// Degenerate triangle, return coordinates along longest edge
if (d11 > d22)
{
GetBaryCentricCoordinates(inA, inC, outU, outW);
outV = 0.0f;
}
else
{
GetBaryCentricCoordinates(inB, inC, outV, outW);
outU = 0.0f;
}
return false;
}
else
{
float c1 = inC.Dot(v1);
float c2 = inC.Dot(v2);
outU = (d22 * c1 - d12 * c2) / denominator;
outV = (d11 * c2 - d12 * c1) / denominator;
outW = 1.0f - outU - outV;
}
}
return true;
}
/// Get the closest point to the origin of line (inA, inB)
/// outSet describes which features are closest: 1 = a, 2 = b, 3 = line segment ab
inline Vec3 GetClosestPointOnLine(Vec3Arg inA, Vec3Arg inB, uint32 &outSet)
{
float u, v;
GetBaryCentricCoordinates(inA, inB, u, v);
if (v <= 0.0f)
{
// inA is closest point
outSet = 0b0001;
return inA;
}
else if (u <= 0.0f)
{
// inB is closest point
outSet = 0b0010;
return inB;
}
else
{
// Closest point lies on line inA inB
outSet = 0b0011;
return u * inA + v * inB;
}
}
/// Get the closest point to the origin of triangle (inA, inB, inC)
/// outSet describes which features are closest: 1 = a, 2 = b, 4 = c, 5 = line segment ac, 7 = triangle interior etc.
/// If MustIncludeC is true, the function assumes that C is part of the closest feature (vertex, edge, face) and does less work, if the assumption is not true then a closest point to the other features is returned.
template <bool MustIncludeC = false>
inline Vec3 GetClosestPointOnTriangle(Vec3Arg inA, Vec3Arg inB, Vec3Arg inC, uint32 &outSet)
{
// Taken from: Real-Time Collision Detection - Christer Ericson (Section: Closest Point on Triangle to Point)
// With p = 0
// The most accurate normal is calculated by using the two shortest edges
// See: https://box2d.org/posts/2014/01/troublesome-triangle/
// The difference in normals is most pronounced when one edge is much smaller than the others (in which case the other 2 must have roughly the same length).
// Therefore we can suffice by just picking the shortest from 2 edges and use that with the 3rd edge to calculate the normal.
// We first check which of the edges is shorter and if bc is shorter than ac then we swap a with c to a is always on the shortest edge
UVec4 swap_ac;
{
Vec3 ac = inC - inA;
Vec3 bc = inC - inB;
swap_ac = Vec4::sLess(bc.DotV4(bc), ac.DotV4(ac));
}
Vec3 a = Vec3::sSelect(inA, inC, swap_ac);
Vec3 c = Vec3::sSelect(inC, inA, swap_ac);
// Calculate normal
Vec3 ab = inB - a;
Vec3 ac = c - a;
Vec3 n = ab.Cross(ac);
float n_len_sq = n.LengthSq();
// Check degenerate
if (n_len_sq < 1.0e-10f) // Square(FLT_EPSILON) was too small and caused numerical problems, see test case TestCollideParallelTriangleVsCapsule
{
// Degenerate, fallback to vertices and edges
// Start with vertex C being the closest
uint32 closest_set = 0b0100;
Vec3 closest_point = inC;
float best_dist_sq = inC.LengthSq();
// If the closest point must include C then A or B cannot be closest
// Note that we test vertices first because we want to prefer a closest vertex over a closest edge (this results in an outSet with fewer bits set)
if constexpr (!MustIncludeC)
{
// Try vertex A
float a_len_sq = inA.LengthSq();
if (a_len_sq < best_dist_sq)
{
closest_set = 0b0001;
closest_point = inA;
best_dist_sq = a_len_sq;
}
// Try vertex B
float b_len_sq = inB.LengthSq();
if (b_len_sq < best_dist_sq)
{
closest_set = 0b0010;
closest_point = inB;
best_dist_sq = b_len_sq;
}
}
// Edge AC
float ac_len_sq = ac.LengthSq();
if (ac_len_sq > Square(FLT_EPSILON))
{
float v = Clamp(-a.Dot(ac) / ac_len_sq, 0.0f, 1.0f);
Vec3 q = a + v * ac;
float dist_sq = q.LengthSq();
if (dist_sq < best_dist_sq)
{
closest_set = 0b0101;
closest_point = q;
best_dist_sq = dist_sq;
}
}
// Edge BC
Vec3 bc = inC - inB;
float bc_len_sq = bc.LengthSq();
if (bc_len_sq > Square(FLT_EPSILON))
{
float v = Clamp(-inB.Dot(bc) / bc_len_sq, 0.0f, 1.0f);
Vec3 q = inB + v * bc;
float dist_sq = q.LengthSq();
if (dist_sq < best_dist_sq)
{
closest_set = 0b0110;
closest_point = q;
best_dist_sq = dist_sq;
}
}
// If the closest point must include C then AB cannot be closest
if constexpr (!MustIncludeC)
{
// Edge AB
ab = inB - inA;
float ab_len_sq = ab.LengthSq();
if (ab_len_sq > Square(FLT_EPSILON))
{
float v = Clamp(-inA.Dot(ab) / ab_len_sq, 0.0f, 1.0f);
Vec3 q = inA + v * ab;
float dist_sq = q.LengthSq();
if (dist_sq < best_dist_sq)
{
closest_set = 0b0011;
closest_point = q;
best_dist_sq = dist_sq;
}
}
}
outSet = closest_set;
return closest_point;
}
// Check if P in vertex region outside A
Vec3 ap = -a;
float d1 = ab.Dot(ap);
float d2 = ac.Dot(ap);
if (d1 <= 0.0f && d2 <= 0.0f)
{
outSet = swap_ac.GetX()? 0b0100 : 0b0001;
return a; // barycentric coordinates (1,0,0)
}
// Check if P in vertex region outside B
Vec3 bp = -inB;
float d3 = ab.Dot(bp);
float d4 = ac.Dot(bp);
if (d3 >= 0.0f && d4 <= d3)
{
outSet = 0b0010;
return inB; // barycentric coordinates (0,1,0)
}
// Check if P in edge region of AB, if so return projection of P onto AB
if (d1 * d4 <= d3 * d2 && d1 >= 0.0f && d3 <= 0.0f)
{
float v = d1 / (d1 - d3);
outSet = swap_ac.GetX()? 0b0110 : 0b0011;
return a + v * ab; // barycentric coordinates (1-v,v,0)
}
// Check if P in vertex region outside C
Vec3 cp = -c;
float d5 = ab.Dot(cp);
float d6 = ac.Dot(cp);
if (d6 >= 0.0f && d5 <= d6)
{
outSet = swap_ac.GetX()? 0b0001 : 0b0100;
return c; // barycentric coordinates (0,0,1)
}
// Check if P in edge region of AC, if so return projection of P onto AC
if (d5 * d2 <= d1 * d6 && d2 >= 0.0f && d6 <= 0.0f)
{
float w = d2 / (d2 - d6);
outSet = 0b0101;
return a + w * ac; // barycentric coordinates (1-w,0,w)
}
// Check if P in edge region of BC, if so return projection of P onto BC
float d4_d3 = d4 - d3;
float d5_d6 = d5 - d6;
if (d3 * d6 <= d5 * d4 && d4_d3 >= 0.0f && d5_d6 >= 0.0f)
{
float w = d4_d3 / (d4_d3 + d5_d6);
outSet = swap_ac.GetX()? 0b0011 : 0b0110;
return inB + w * (c - inB); // barycentric coordinates (0,1-w,w)
}
// P inside face region.
// Here we deviate from Christer Ericson's article to improve accuracy.
// Determine distance between triangle and origin: distance = (centroid - origin) . normal / |normal|
// Closest point to origin is then: distance . normal / |normal|
// Note that this way of calculating the closest point is much more accurate than first calculating barycentric coordinates
// and then calculating the closest point based on those coordinates.
outSet = 0b0111;
return n * (a + inB + c).Dot(n) / (3.0f * n_len_sq);
}
/// Check if the origin is outside the plane of triangle (inA, inB, inC). inD specifies the front side of the plane.
inline bool OriginOutsideOfPlane(Vec3Arg inA, Vec3Arg inB, Vec3Arg inC, Vec3Arg inD)
{
// Taken from: Real-Time Collision Detection - Christer Ericson (Section: Closest Point on Tetrahedron to Point)
// With p = 0
// Test if point p and d lie on opposite sides of plane through abc
Vec3 n = (inB - inA).Cross(inC - inA);
float signp = inA.Dot(n); // [AP AB AC]
float signd = (inD - inA).Dot(n); // [AD AB AC]
// Points on opposite sides if expression signs are the same
// Note that we left out the minus sign in signp so we need to check > 0 instead of < 0 as in Christer's book
// We compare against a small negative value to allow for a little bit of slop in the calculations
return signp * signd > -FLT_EPSILON;
}
/// Returns for each of the planes of the tetrahedron if the origin is inside it
/// Roughly equivalent to:
/// [OriginOutsideOfPlane(inA, inB, inC, inD),
/// OriginOutsideOfPlane(inA, inC, inD, inB),
/// OriginOutsideOfPlane(inA, inD, inB, inC),
/// OriginOutsideOfPlane(inB, inD, inC, inA)]
inline UVec4 OriginOutsideOfTetrahedronPlanes(Vec3Arg inA, Vec3Arg inB, Vec3Arg inC, Vec3Arg inD)
{
Vec3 ab = inB - inA;
Vec3 ac = inC - inA;
Vec3 ad = inD - inA;
Vec3 bd = inD - inB;
Vec3 bc = inC - inB;
Vec3 ab_cross_ac = ab.Cross(ac);
Vec3 ac_cross_ad = ac.Cross(ad);
Vec3 ad_cross_ab = ad.Cross(ab);
Vec3 bd_cross_bc = bd.Cross(bc);
// For each plane get the side on which the origin is
float signp0 = inA.Dot(ab_cross_ac); // ABC
float signp1 = inA.Dot(ac_cross_ad); // ACD
float signp2 = inA.Dot(ad_cross_ab); // ADB
float signp3 = inB.Dot(bd_cross_bc); // BDC
Vec4 signp(signp0, signp1, signp2, signp3);
// For each plane get the side that is outside (determined by the 4th point)
float signd0 = ad.Dot(ab_cross_ac); // D
float signd1 = ab.Dot(ac_cross_ad); // B
float signd2 = ac.Dot(ad_cross_ab); // C
float signd3 = -ab.Dot(bd_cross_bc); // A
Vec4 signd(signd0, signd1, signd2, signd3);
// The winding of all triangles has been chosen so that signd should have the
// same sign for all components. If this is not the case the tetrahedron
// is degenerate and we return that the origin is in front of all sides
int sign_bits = signd.GetSignBits();
switch (sign_bits)
{
case 0:
// All positive
return Vec4::sGreaterOrEqual(signp, Vec4::sReplicate(-FLT_EPSILON));
case 0xf:
// All negative
return Vec4::sLessOrEqual(signp, Vec4::sReplicate(FLT_EPSILON));
default:
// Mixed signs, degenerate tetrahedron
return UVec4::sReplicate(0xffffffff);
}
}
/// Get the closest point between tetrahedron (inA, inB, inC, inD) to the origin
/// outSet specifies which feature was closest, 1 = a, 2 = b, 4 = c, 8 = d. Edges have 2 bits set, triangles 3 and if the point is in the interior 4 bits are set.
/// If MustIncludeD is true, the function assumes that D is part of the closest feature (vertex, edge, face, tetrahedron) and does less work, if the assumption is not true then a closest point to the other features is returned.
template <bool MustIncludeD = false>
inline Vec3 GetClosestPointOnTetrahedron(Vec3Arg inA, Vec3Arg inB, Vec3Arg inC, Vec3Arg inD, uint32 &outSet)
{
// Taken from: Real-Time Collision Detection - Christer Ericson (Section: Closest Point on Tetrahedron to Point)
// With p = 0
// Start out assuming point inside all halfspaces, so closest to itself
uint32 closest_set = 0b1111;
Vec3 closest_point = Vec3::sZero();
float best_dist_sq = FLT_MAX;
// Determine for each of the faces of the tetrahedron if the origin is in front of the plane
UVec4 origin_out_of_planes = OriginOutsideOfTetrahedronPlanes(inA, inB, inC, inD);
// If point outside face abc then compute closest point on abc
if (origin_out_of_planes.GetX()) // OriginOutsideOfPlane(inA, inB, inC, inD)
{
if constexpr (MustIncludeD)
{
// If the closest point must include D then ABC cannot be closest but the closest point
// cannot be an interior point either so we return A as closest point
closest_set = 0b0001;
closest_point = inA;
}
else
{
// Test the face normally
closest_point = GetClosestPointOnTriangle<false>(inA, inB, inC, closest_set);
}
best_dist_sq = closest_point.LengthSq();
}
// Repeat test for face acd
if (origin_out_of_planes.GetY()) // OriginOutsideOfPlane(inA, inC, inD, inB)
{
uint32 set;
Vec3 q = GetClosestPointOnTriangle<MustIncludeD>(inA, inC, inD, set);
float dist_sq = q.LengthSq();
if (dist_sq < best_dist_sq)
{
best_dist_sq = dist_sq;
closest_point = q;
closest_set = (set & 0b0001) + ((set & 0b0110) << 1);
}
}
// Repeat test for face adb
if (origin_out_of_planes.GetZ()) // OriginOutsideOfPlane(inA, inD, inB, inC)
{
// Keep original vertex order, it doesn't matter if the triangle is facing inward or outward
// and it improves consistency for GJK which will always add a new vertex D and keep the closest
// feature from the previous iteration in ABC
uint32 set;
Vec3 q = GetClosestPointOnTriangle<MustIncludeD>(inA, inB, inD, set);
float dist_sq = q.LengthSq();
if (dist_sq < best_dist_sq)
{
best_dist_sq = dist_sq;
closest_point = q;
closest_set = (set & 0b0011) + ((set & 0b0100) << 1);
}
}
// Repeat test for face bdc
if (origin_out_of_planes.GetW()) // OriginOutsideOfPlane(inB, inD, inC, inA)
{
// Keep original vertex order, it doesn't matter if the triangle is facing inward or outward
// and it improves consistency for GJK which will always add a new vertex D and keep the closest
// feature from the previous iteration in ABC
uint32 set;
Vec3 q = GetClosestPointOnTriangle<MustIncludeD>(inB, inC, inD, set);
float dist_sq = q.LengthSq();
if (dist_sq < best_dist_sq)
{
closest_point = q;
closest_set = set << 1;
}
}
outSet = closest_set;
return closest_point;
}
};
JPH_PRECISE_MATH_OFF
JPH_NAMESPACE_END

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,276 @@
// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#pragma once
//#define JPH_CONVEX_BUILDER_DEBUG
//#define JPH_CONVEX_BUILDER_DUMP_SHAPE
#ifdef JPH_CONVEX_BUILDER_DEBUG
#include <Jolt/Core/Color.h>
#endif
#include <Jolt/Core/StaticArray.h>
#include <Jolt/Core/NonCopyable.h>
JPH_NAMESPACE_BEGIN
/// A convex hull builder that tries to create hulls as accurately as possible. Used for offline processing.
class JPH_EXPORT ConvexHullBuilder : public NonCopyable
{
public:
// Forward declare
class Face;
/// Class that holds the information of an edge
class Edge : public NonCopyable
{
public:
JPH_OVERRIDE_NEW_DELETE
/// Constructor
Edge(Face *inFace, int inStartIdx) : mFace(inFace), mStartIdx(inStartIdx) { }
/// Get the previous edge
inline Edge * GetPreviousEdge()
{
Edge *prev_edge = this;
while (prev_edge->mNextEdge != this)
prev_edge = prev_edge->mNextEdge;
return prev_edge;
}
Face * mFace; ///< Face that this edge belongs to
Edge * mNextEdge = nullptr; ///< Next edge of this face
Edge * mNeighbourEdge = nullptr; ///< Edge that this edge is connected to
int mStartIdx; ///< Vertex index in mPositions that indicates the start vertex of this edge
};
using ConflictList = Array<int>;
/// Class that holds the information of one face
class Face : public NonCopyable
{
public:
JPH_OVERRIDE_NEW_DELETE
/// Destructor
~Face();
/// Initialize a face with three indices
void Initialize(int inIdx0, int inIdx1, int inIdx2, const Vec3 *inPositions);
/// Calculates the centroid and normal for this face
void CalculateNormalAndCentroid(const Vec3 *inPositions);
/// Check if face inFace is facing inPosition
inline bool IsFacing(Vec3Arg inPosition) const
{
JPH_ASSERT(!mRemoved);
return mNormal.Dot(inPosition - mCentroid) > 0.0f;
}
Vec3 mNormal; ///< Normal of this face, length is 2 times area of face
Vec3 mCentroid; ///< Center of the face
ConflictList mConflictList; ///< Positions associated with this edge (that are closest to this edge). The last position in the list is the point that is furthest away from the face.
Edge * mFirstEdge = nullptr; ///< First edge of this face
float mFurthestPointDistanceSq = 0.0f; ///< Squared distance of furthest point from the conflict list to the face
bool mRemoved = false; ///< Flag that indicates that face has been removed (face will be freed later)
#ifdef JPH_CONVEX_BUILDER_DEBUG
int mIteration; ///< Iteration that this face was created
#endif
};
// Typedefs
using Positions = Array<Vec3>;
using Faces = Array<Face *>;
/// Constructor
explicit ConvexHullBuilder(const Positions &inPositions);
/// Destructor
~ConvexHullBuilder() { FreeFaces(); }
/// Result enum that indicates how the hull got created
enum class EResult
{
Success, ///< Hull building finished successfully
MaxVerticesReached, ///< Hull building finished successfully, but the desired accuracy was not reached because the max vertices limit was reached
TooFewPoints, ///< Too few points to create a hull
TooFewFaces, ///< Too few faces in the created hull (signifies precision errors during building)
Degenerate, ///< Degenerate hull detected
};
/// Takes all positions as provided by the constructor and use them to build a hull
/// Any points that are closer to the hull than inTolerance will be discarded
/// @param inMaxVertices Max vertices to allow in the hull. Specify INT_MAX if there is no limit.
/// @param inTolerance Max distance that a point is allowed to be outside of the hull
/// @param outError Error message when building fails
/// @return Status code that reports if the hull was created or not
EResult Initialize(int inMaxVertices, float inTolerance, const char *&outError);
/// Returns the amount of vertices that are currently used by the hull
int GetNumVerticesUsed() const;
/// Returns true if the hull contains a polygon with inIndices (counter clockwise indices in mPositions)
bool ContainsFace(const Array<int> &inIndices) const;
/// Calculate the center of mass and the volume of the current convex hull
void GetCenterOfMassAndVolume(Vec3 &outCenterOfMass, float &outVolume) const;
/// Determines the point that is furthest outside of the hull and reports how far it is outside of the hull (which indicates a failure during hull building)
/// @param outFaceWithMaxError The face that caused the error
/// @param outMaxError The maximum distance of a point to the hull
/// @param outMaxErrorPositionIdx The index of the point that had this distance
/// @param outCoplanarDistance Points that are less than this distance from the hull are considered on the hull. This should be used as a lowerbound for the allowed error.
void DetermineMaxError(Face *&outFaceWithMaxError, float &outMaxError, int &outMaxErrorPositionIdx, float &outCoplanarDistance) const;
/// Access to the created faces. Memory is owned by the convex hull builder.
const Faces & GetFaces() const { return mFaces; }
private:
/// Minimal square area of a triangle (used for merging and checking if a triangle is degenerate)
static constexpr float cMinTriangleAreaSq = 1.0e-12f;
#ifdef JPH_CONVEX_BUILDER_DEBUG
/// Factor to scale convex hull when debug drawing the construction process
static constexpr Real cDrawScale = 10;
#endif
/// Class that holds an edge including start and end index
class FullEdge
{
public:
Edge * mNeighbourEdge; ///< Edge that this edge is connected to
int mStartIdx; ///< Vertex index in mPositions that indicates the start vertex of this edge
int mEndIdx; ///< Vertex index in mPosition that indicates the end vertex of this edge
};
// Private typedefs
using FullEdges = Array<FullEdge>;
// Determine a suitable tolerance for detecting that points are coplanar
float DetermineCoplanarDistance() const;
/// Find the face for which inPoint is furthest to the front
/// @param inPoint Point to test
/// @param inFaces List of faces to test
/// @param outFace Returns the best face
/// @param outDistSq Returns the squared distance how much inPoint is in front of the plane of the face
void GetFaceForPoint(Vec3Arg inPoint, const Faces &inFaces, Face *&outFace, float &outDistSq) const;
/// @brief Calculates the distance between inPoint and inFace
/// @param inFace Face to test
/// @param inPoint Point to test
/// @return If the projection of the point on the plane is interior to the face 0, otherwise the squared distance to the closest edge
float GetDistanceToEdgeSq(Vec3Arg inPoint, const Face *inFace) const;
/// Assigns a position to one of the supplied faces based on which face is closest.
/// @param inPositionIdx Index of the position to add
/// @param inFaces List of faces to consider
/// @param inToleranceSq Tolerance of the hull, if the point is closer to the face than this, we ignore it
/// @return True if point was assigned, false if it was discarded or added to the coplanar list
bool AssignPointToFace(int inPositionIdx, const Faces &inFaces, float inToleranceSq);
/// Add a new point to the convex hull
void AddPoint(Face *inFacingFace, int inIdx, float inToleranceSq, Faces &outNewFaces);
/// Remove all faces that have been marked 'removed' from mFaces list
void GarbageCollectFaces();
/// Create a new face
Face * CreateFace();
/// Create a new triangle
Face * CreateTriangle(int inIdx1, int inIdx2, int inIdx3);
/// Delete a face (checking that it is not connected to any other faces)
void FreeFace(Face *inFace);
/// Release all faces and edges
void FreeFaces();
/// Link face edge to other face edge
static void sLinkFace(Edge *inEdge1, Edge *inEdge2);
/// Unlink this face from all of its neighbours
static void sUnlinkFace(Face *inFace);
/// Given one face that faces inVertex, find the edges of the faces that are not facing inVertex.
/// Will flag all those faces for removal.
void FindEdge(Face *inFacingFace, Vec3Arg inVertex, FullEdges &outEdges) const;
/// Merges the two faces that share inEdge into the face inEdge->mFace
void MergeFaces(Edge *inEdge);
/// Merges inFace with a neighbour if it is degenerate (a sliver)
void MergeDegenerateFace(Face *inFace, Faces &ioAffectedFaces);
/// Merges any coplanar as well as neighbours that form a non-convex edge into inFace.
/// Faces are considered coplanar if the distance^2 of the other face's centroid is smaller than inToleranceSq.
void MergeCoplanarOrConcaveFaces(Face *inFace, float inToleranceSq, Faces &ioAffectedFaces);
/// Mark face as affected if it is not already in the list
static void sMarkAffected(Face *inFace, Faces &ioAffectedFaces);
/// Removes all invalid edges.
/// 1. Merges inFace with faces that share two edges with it since this means inFace or the other face cannot be convex or the edge is colinear.
/// 2. Removes edges that are interior to inFace (that have inFace on both sides)
/// Any faces that need to be checked for validity will be added to ioAffectedFaces.
void RemoveInvalidEdges(Face *inFace, Faces &ioAffectedFaces);
/// Removes inFace if it consists of only 2 edges, linking its neighbouring faces together
/// Any faces that need to be checked for validity will be added to ioAffectedFaces.
/// @return True if face was removed.
bool RemoveTwoEdgeFace(Face *inFace, Faces &ioAffectedFaces) const;
#ifdef JPH_ENABLE_ASSERTS
/// Dumps the text representation of a face to the TTY
void DumpFace(const Face *inFace) const;
/// Dumps the text representation of all faces to the TTY
void DumpFaces() const;
/// Check consistency of 1 face
void ValidateFace(const Face *inFace) const;
/// Check consistency of all faces
void ValidateFaces() const;
#endif
#ifdef JPH_CONVEX_BUILDER_DEBUG
/// Draw state of algorithm
void DrawState(bool inDrawConflictList = false) const;
/// Draw a face for debugging purposes
void DrawWireFace(const Face *inFace, ColorArg inColor) const;
/// Draw an edge for debugging purposes
void DrawEdge(const Edge *inEdge, ColorArg inColor) const;
#endif
#ifdef JPH_CONVEX_BUILDER_DUMP_SHAPE
void DumpShape() const;
#endif
const Positions & mPositions; ///< List of positions (some of them are part of the hull)
Faces mFaces; ///< List of faces that are part of the hull (if !mRemoved)
struct Coplanar
{
int mPositionIdx; ///< Index in mPositions
float mDistanceSq; ///< Distance to the edge of closest face (should be > 0)
};
using CoplanarList = Array<Coplanar>;
CoplanarList mCoplanarList; ///< List of positions that are coplanar to a face but outside of the face, these are added to the hull at the end
#ifdef JPH_CONVEX_BUILDER_DEBUG
int mIteration; ///< Number of iterations we've had so far (for debug purposes)
mutable RVec3 mOffset; ///< Offset to use for state drawing
Vec3 mDelta; ///< Delta offset between next states
#endif
};
JPH_NAMESPACE_END

View File

@@ -0,0 +1,335 @@
// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#include <Jolt/Jolt.h>
#include <Jolt/Geometry/ConvexHullBuilder2D.h>
#ifdef JPH_CONVEX_BUILDER_2D_DEBUG
#include <Jolt/Renderer/DebugRenderer.h>
#endif
JPH_NAMESPACE_BEGIN
void ConvexHullBuilder2D::Edge::CalculateNormalAndCenter(const Vec3 *inPositions)
{
Vec3 p1 = inPositions[mStartIdx];
Vec3 p2 = inPositions[mNextEdge->mStartIdx];
// Center of edge
mCenter = 0.5f * (p1 + p2);
// Create outward pointing normal.
// We have two choices for the normal (which satisfies normal . edge = 0):
// normal1 = (-edge.y, edge.x, 0)
// normal2 = (edge.y, -edge.x, 0)
// We want (normal x edge).z > 0 so that the normal points out of the polygon. Only normal2 satisfies this condition.
Vec3 edge = p2 - p1;
mNormal = Vec3(edge.GetY(), -edge.GetX(), 0);
}
ConvexHullBuilder2D::ConvexHullBuilder2D(const Positions &inPositions) :
mPositions(inPositions)
{
#ifdef JPH_CONVEX_BUILDER_2D_DEBUG
// Center the drawing of the first hull around the origin and calculate the delta offset between states
mOffset = RVec3::sZero();
if (mPositions.empty())
{
// No hull will be generated
mDelta = Vec3::sZero();
}
else
{
Vec3 maxv = Vec3::sReplicate(-FLT_MAX), minv = Vec3::sReplicate(FLT_MAX);
for (Vec3 v : mPositions)
{
minv = Vec3::sMin(minv, v);
maxv = Vec3::sMax(maxv, v);
mOffset -= v;
}
mOffset /= Real(mPositions.size());
mDelta = Vec3((maxv - minv).GetX() + 0.5f, 0, 0);
mOffset += mDelta; // Don't start at origin, we're already drawing the final hull there
}
#endif
}
ConvexHullBuilder2D::~ConvexHullBuilder2D()
{
FreeEdges();
}
void ConvexHullBuilder2D::FreeEdges()
{
if (mFirstEdge == nullptr)
return;
Edge *edge = mFirstEdge;
do
{
Edge *next = edge->mNextEdge;
delete edge;
edge = next;
} while (edge != mFirstEdge);
mFirstEdge = nullptr;
mNumEdges = 0;
}
#ifdef JPH_ENABLE_ASSERTS
void ConvexHullBuilder2D::ValidateEdges() const
{
if (mFirstEdge == nullptr)
{
JPH_ASSERT(mNumEdges == 0);
return;
}
int count = 0;
Edge *edge = mFirstEdge;
do
{
// Validate connectivity
JPH_ASSERT(edge->mNextEdge->mPrevEdge == edge);
JPH_ASSERT(edge->mPrevEdge->mNextEdge == edge);
++count;
edge = edge->mNextEdge;
} while (edge != mFirstEdge);
// Validate that count matches
JPH_ASSERT(count == mNumEdges);
}
#endif // JPH_ENABLE_ASSERTS
void ConvexHullBuilder2D::AssignPointToEdge(int inPositionIdx, const Array<Edge *> &inEdges) const
{
Vec3 point = mPositions[inPositionIdx];
Edge *best_edge = nullptr;
float best_dist_sq = 0.0f;
// Test against all edges
for (Edge *edge : inEdges)
{
// Determine distance to edge
float dot = edge->mNormal.Dot(point - edge->mCenter);
if (dot > 0.0f)
{
float dist_sq = dot * dot / edge->mNormal.LengthSq();
if (dist_sq > best_dist_sq)
{
best_edge = edge;
best_dist_sq = dist_sq;
}
}
}
// If this point is in front of the edge, add it to the conflict list
if (best_edge != nullptr)
{
if (best_dist_sq > best_edge->mFurthestPointDistanceSq)
{
// This point is further away than any others, update the distance and add point as last point
best_edge->mFurthestPointDistanceSq = best_dist_sq;
best_edge->mConflictList.push_back(inPositionIdx);
}
else
{
// Not the furthest point, add it as the before last point
best_edge->mConflictList.insert(best_edge->mConflictList.begin() + best_edge->mConflictList.size() - 1, inPositionIdx);
}
}
}
ConvexHullBuilder2D::EResult ConvexHullBuilder2D::Initialize(int inIdx1, int inIdx2, int inIdx3, int inMaxVertices, float inTolerance, Edges &outEdges)
{
// Clear any leftovers
FreeEdges();
outEdges.clear();
// Reset flag
EResult result = EResult::Success;
// Determine a suitable tolerance for detecting that points are colinear
// Formula as per: Implementing Quickhull - Dirk Gregorius.
Vec3 vmax = Vec3::sZero();
for (Vec3 v : mPositions)
vmax = Vec3::sMax(vmax, v.Abs());
float colinear_tolerance_sq = Square(2.0f * FLT_EPSILON * (vmax.GetX() + vmax.GetY()));
// Increase desired tolerance if accuracy doesn't allow it
float tolerance_sq = max(colinear_tolerance_sq, Square(inTolerance));
// Start with the initial indices in counter clockwise order
float z = (mPositions[inIdx2] - mPositions[inIdx1]).Cross(mPositions[inIdx3] - mPositions[inIdx1]).GetZ();
if (z < 0.0f)
std::swap(inIdx1, inIdx2);
// Create and link edges
Edge *e1 = new Edge(inIdx1);
Edge *e2 = new Edge(inIdx2);
Edge *e3 = new Edge(inIdx3);
e1->mNextEdge = e2;
e1->mPrevEdge = e3;
e2->mNextEdge = e3;
e2->mPrevEdge = e1;
e3->mNextEdge = e1;
e3->mPrevEdge = e2;
mFirstEdge = e1;
mNumEdges = 3;
// Build the initial conflict lists
Array<Edge *> edges { e1, e2, e3 };
for (Edge *edge : edges)
edge->CalculateNormalAndCenter(mPositions.data());
for (int idx = 0; idx < (int)mPositions.size(); ++idx)
if (idx != inIdx1 && idx != inIdx2 && idx != inIdx3)
AssignPointToEdge(idx, edges);
JPH_IF_ENABLE_ASSERTS(ValidateEdges();)
#ifdef JPH_CONVEX_BUILDER_2D_DEBUG
DrawState();
#endif
// Add the remaining points to the hull
for (;;)
{
// Check if we've reached the max amount of vertices that are allowed
if (mNumEdges >= inMaxVertices)
{
result = EResult::MaxVerticesReached;
break;
}
// Find the edge with the furthest point on it
Edge *edge_with_furthest_point = nullptr;
float furthest_dist_sq = 0.0f;
Edge *edge = mFirstEdge;
do
{
if (edge->mFurthestPointDistanceSq > furthest_dist_sq)
{
furthest_dist_sq = edge->mFurthestPointDistanceSq;
edge_with_furthest_point = edge;
}
edge = edge->mNextEdge;
} while (edge != mFirstEdge);
// If there is none closer than our tolerance value, we're done
if (edge_with_furthest_point == nullptr || furthest_dist_sq < tolerance_sq)
break;
// Take the furthest point
int furthest_point_idx = edge_with_furthest_point->mConflictList.back();
edge_with_furthest_point->mConflictList.pop_back();
Vec3 furthest_point = mPositions[furthest_point_idx];
// Find the horizon of edges that need to be removed
Edge *first_edge = edge_with_furthest_point;
do
{
Edge *prev = first_edge->mPrevEdge;
if (!prev->IsFacing(furthest_point))
break;
first_edge = prev;
} while (first_edge != edge_with_furthest_point);
Edge *last_edge = edge_with_furthest_point;
do
{
Edge *next = last_edge->mNextEdge;
if (!next->IsFacing(furthest_point))
break;
last_edge = next;
} while (last_edge != edge_with_furthest_point);
// Create new edges
e1 = new Edge(first_edge->mStartIdx);
e2 = new Edge(furthest_point_idx);
e1->mNextEdge = e2;
e1->mPrevEdge = first_edge->mPrevEdge;
e2->mPrevEdge = e1;
e2->mNextEdge = last_edge->mNextEdge;
e1->mPrevEdge->mNextEdge = e1;
e2->mNextEdge->mPrevEdge = e2;
mFirstEdge = e1; // We could delete mFirstEdge so just update it to the newly created edge
mNumEdges += 2;
// Calculate normals
Array<Edge *> new_edges { e1, e2 };
for (Edge *new_edge : new_edges)
new_edge->CalculateNormalAndCenter(mPositions.data());
// Delete the old edges
for (;;)
{
Edge *next = first_edge->mNextEdge;
// Redistribute points in conflict list
for (int idx : first_edge->mConflictList)
AssignPointToEdge(idx, new_edges);
// Delete the old edge
delete first_edge;
--mNumEdges;
if (first_edge == last_edge)
break;
first_edge = next;
}
JPH_IF_ENABLE_ASSERTS(ValidateEdges();)
#ifdef JPH_CONVEX_BUILDER_2D_DEBUG
DrawState();
#endif
}
// Convert the edge list to a list of indices
outEdges.reserve(mNumEdges);
Edge *edge = mFirstEdge;
do
{
outEdges.push_back(edge->mStartIdx);
edge = edge->mNextEdge;
} while (edge != mFirstEdge);
return result;
}
#ifdef JPH_CONVEX_BUILDER_2D_DEBUG
void ConvexHullBuilder2D::DrawState()
{
int color_idx = 0;
const Edge *edge = mFirstEdge;
do
{
const Edge *next = edge->mNextEdge;
// Get unique color per edge
Color color = Color::sGetDistinctColor(color_idx++);
// Draw edge and normal
DebugRenderer::sInstance->DrawArrow(cDrawScale * (mOffset + mPositions[edge->mStartIdx]), cDrawScale * (mOffset + mPositions[next->mStartIdx]), color, 0.1f);
DebugRenderer::sInstance->DrawArrow(cDrawScale * (mOffset + edge->mCenter), cDrawScale * (mOffset + edge->mCenter) + edge->mNormal.NormalizedOr(Vec3::sZero()), Color::sGreen, 0.1f);
// Draw points that belong to this edge in the same color
for (int idx : edge->mConflictList)
DebugRenderer::sInstance->DrawMarker(cDrawScale * (mOffset + mPositions[idx]), color, 0.05f);
edge = next;
} while (edge != mFirstEdge);
mOffset += mDelta;
}
#endif
JPH_NAMESPACE_END

View File

@@ -0,0 +1,105 @@
// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#pragma once
#include <Jolt/Core/NonCopyable.h>
//#define JPH_CONVEX_BUILDER_2D_DEBUG
JPH_NAMESPACE_BEGIN
/// A convex hull builder that tries to create 2D hulls as accurately as possible. Used for offline processing.
class JPH_EXPORT ConvexHullBuilder2D : public NonCopyable
{
public:
using Positions = Array<Vec3>;
using Edges = Array<int>;
/// Constructor
/// @param inPositions Positions used to make the hull. Uses X and Y component of Vec3 only!
explicit ConvexHullBuilder2D(const Positions &inPositions);
/// Destructor
~ConvexHullBuilder2D();
/// Result enum that indicates how the hull got created
enum class EResult
{
Success, ///< Hull building finished successfully
MaxVerticesReached, ///< Hull building finished successfully, but the desired accuracy was not reached because the max vertices limit was reached
};
/// Takes all positions as provided by the constructor and use them to build a hull
/// Any points that are closer to the hull than inTolerance will be discarded
/// @param inIdx1 , inIdx2 , inIdx3 The indices to use as initial hull (in any order)
/// @param inMaxVertices Max vertices to allow in the hull. Specify INT_MAX if there is no limit.
/// @param inTolerance Max distance that a point is allowed to be outside of the hull
/// @param outEdges On success this will contain the list of indices that form the hull (counter clockwise)
/// @return Status code that reports if the hull was created or not
EResult Initialize(int inIdx1, int inIdx2, int inIdx3, int inMaxVertices, float inTolerance, Edges &outEdges);
private:
#ifdef JPH_CONVEX_BUILDER_2D_DEBUG
/// Factor to scale convex hull when debug drawing the construction process
static constexpr Real cDrawScale = 10;
#endif
class Edge;
/// Frees all edges
void FreeEdges();
/// Assigns a position to one of the supplied edges based on which edge is closest.
/// @param inPositionIdx Index of the position to add
/// @param inEdges List of edges to consider
void AssignPointToEdge(int inPositionIdx, const Array<Edge *> &inEdges) const;
#ifdef JPH_CONVEX_BUILDER_2D_DEBUG
/// Draw state of algorithm
void DrawState();
#endif
#ifdef JPH_ENABLE_ASSERTS
/// Validate that the edge structure is intact
void ValidateEdges() const;
#endif
using ConflictList = Array<int>;
/// Linked list of edges
class Edge
{
public:
JPH_OVERRIDE_NEW_DELETE
/// Constructor
explicit Edge(int inStartIdx) : mStartIdx(inStartIdx) { }
/// Calculate the center of the edge and the edge normal
void CalculateNormalAndCenter(const Vec3 *inPositions);
/// Check if this edge is facing inPosition
inline bool IsFacing(Vec3Arg inPosition) const { return mNormal.Dot(inPosition - mCenter) > 0.0f; }
Vec3 mNormal; ///< Normal of the edge (not normalized)
Vec3 mCenter; ///< Center of the edge
ConflictList mConflictList; ///< Positions associated with this edge (that are closest to this edge). Last entry is the one furthest away from the edge, remainder is unsorted.
Edge * mPrevEdge = nullptr; ///< Previous edge in circular list
Edge * mNextEdge = nullptr; ///< Next edge in circular list
int mStartIdx; ///< Position index of start of this edge
float mFurthestPointDistanceSq = 0.0f; ///< Squared distance of furthest point from the conflict list to the edge
};
const Positions & mPositions; ///< List of positions (some of them are part of the hull)
Edge * mFirstEdge = nullptr; ///< First edge of the hull
int mNumEdges = 0; ///< Number of edges in hull
#ifdef JPH_CONVEX_BUILDER_2D_DEBUG
RVec3 mOffset; ///< Offset to use for state drawing
Vec3 mDelta; ///< Delta offset between next states
#endif
};
JPH_NAMESPACE_END

View File

@@ -0,0 +1,188 @@
// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#pragma once
#include <Jolt/Math/Mat44.h>
JPH_NAMESPACE_BEGIN
/// Helper functions to get the support point for a convex object
/// Structure that transforms a convex object (supports only uniform scaling)
template <typename ConvexObject>
struct TransformedConvexObject
{
/// Create transformed convex object.
TransformedConvexObject(Mat44Arg inTransform, const ConvexObject &inObject) :
mTransform(inTransform),
mObject(inObject)
{
}
/// Calculate the support vector for this convex shape.
Vec3 GetSupport(Vec3Arg inDirection) const
{
return mTransform * mObject.GetSupport(mTransform.Multiply3x3Transposed(inDirection));
}
/// Get the vertices of the face that faces inDirection the most
template <class VERTEX_ARRAY>
void GetSupportingFace(Vec3Arg inDirection, VERTEX_ARRAY &outVertices) const
{
mObject.GetSupportingFace(mTransform.Multiply3x3Transposed(inDirection), outVertices);
for (Vec3 &v : outVertices)
v = mTransform * v;
}
Mat44 mTransform;
const ConvexObject & mObject;
};
/// Structure that adds a convex radius
template <typename ConvexObject>
struct AddConvexRadius
{
AddConvexRadius(const ConvexObject &inObject, float inRadius) :
mObject(inObject),
mRadius(inRadius)
{
}
/// Calculate the support vector for this convex shape.
Vec3 GetSupport(Vec3Arg inDirection) const
{
float length = inDirection.Length();
return length > 0.0f ? mObject.GetSupport(inDirection) + (mRadius / length) * inDirection : mObject.GetSupport(inDirection);
}
const ConvexObject & mObject;
float mRadius;
};
/// Structure that performs a Minkowski difference A - B
template <typename ConvexObjectA, typename ConvexObjectB>
struct MinkowskiDifference
{
MinkowskiDifference(const ConvexObjectA &inObjectA, const ConvexObjectB &inObjectB) :
mObjectA(inObjectA),
mObjectB(inObjectB)
{
}
/// Calculate the support vector for this convex shape.
Vec3 GetSupport(Vec3Arg inDirection) const
{
return mObjectA.GetSupport(inDirection) - mObjectB.GetSupport(-inDirection);
}
const ConvexObjectA & mObjectA;
const ConvexObjectB & mObjectB;
};
/// Class that wraps a point so that it can be used with convex collision detection
struct PointConvexSupport
{
/// Calculate the support vector for this convex shape.
Vec3 GetSupport([[maybe_unused]] Vec3Arg inDirection) const
{
return mPoint;
}
Vec3 mPoint;
};
/// Class that wraps a triangle so that it can used with convex collision detection
struct TriangleConvexSupport
{
/// Constructor
TriangleConvexSupport(Vec3Arg inV1, Vec3Arg inV2, Vec3Arg inV3) :
mV1(inV1),
mV2(inV2),
mV3(inV3)
{
}
/// Calculate the support vector for this convex shape.
Vec3 GetSupport(Vec3Arg inDirection) const
{
// Project vertices on inDirection
float d1 = mV1.Dot(inDirection);
float d2 = mV2.Dot(inDirection);
float d3 = mV3.Dot(inDirection);
// Return vertex with biggest projection
if (d1 > d2)
{
if (d1 > d3)
return mV1;
else
return mV3;
}
else
{
if (d2 > d3)
return mV2;
else
return mV3;
}
}
/// Get the vertices of the face that faces inDirection the most
template <class VERTEX_ARRAY>
void GetSupportingFace([[maybe_unused]] Vec3Arg inDirection, VERTEX_ARRAY &outVertices) const
{
outVertices.push_back(mV1);
outVertices.push_back(mV2);
outVertices.push_back(mV3);
}
/// The three vertices of the triangle
Vec3 mV1;
Vec3 mV2;
Vec3 mV3;
};
/// Class that wraps a polygon so that it can used with convex collision detection
template <class VERTEX_ARRAY>
struct PolygonConvexSupport
{
/// Constructor
explicit PolygonConvexSupport(const VERTEX_ARRAY &inVertices) :
mVertices(inVertices)
{
}
/// Calculate the support vector for this convex shape.
Vec3 GetSupport(Vec3Arg inDirection) const
{
Vec3 support_point = mVertices[0];
float best_dot = mVertices[0].Dot(inDirection);
for (typename VERTEX_ARRAY::const_iterator v = mVertices.begin() + 1; v < mVertices.end(); ++v)
{
float dot = v->Dot(inDirection);
if (dot > best_dot)
{
best_dot = dot;
support_point = *v;
}
}
return support_point;
}
/// Get the vertices of the face that faces inDirection the most
template <class VERTEX_ARRAY_ARG>
void GetSupportingFace([[maybe_unused]] Vec3Arg inDirection, VERTEX_ARRAY_ARG &outVertices) const
{
for (Vec3 v : mVertices)
outVertices.push_back(v);
}
/// The vertices of the polygon
const VERTEX_ARRAY & mVertices;
};
JPH_NAMESPACE_END

View File

@@ -0,0 +1,845 @@
// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#pragma once
// Define to validate the integrity of the hull structure
//#define JPH_EPA_CONVEX_BUILDER_VALIDATE
// Define to draw the building of the hull for debugging purposes
//#define JPH_EPA_CONVEX_BUILDER_DRAW
#include <Jolt/Core/NonCopyable.h>
#include <Jolt/Core/BinaryHeap.h>
#ifdef JPH_EPA_CONVEX_BUILDER_DRAW
#include <Jolt/Renderer/DebugRenderer.h>
#include <Jolt/Core/StringTools.h>
#endif
JPH_NAMESPACE_BEGIN
/// A convex hull builder specifically made for the EPA penetration depth calculation. It trades accuracy for speed and will simply abort of the hull forms defects due to numerical precision problems.
class EPAConvexHullBuilder : public NonCopyable
{
private:
#ifdef JPH_EPA_CONVEX_BUILDER_DRAW
/// Factor to scale convex hull when debug drawing the construction process
static constexpr Real cDrawScale = 10;
#endif
public:
// Due to the Euler characteristic (https://en.wikipedia.org/wiki/Euler_characteristic) we know that Vertices - Edges + Faces = 2
// In our case we only have triangles and they are always fully connected, so each edge is shared exactly between 2 faces: Edges = Faces * 3 / 2
// Substituting: Vertices = Faces / 2 + 2 which is approximately Faces / 2.
static constexpr int cMaxTriangles = 256; ///< Max triangles in hull
static constexpr int cMaxPoints = cMaxTriangles / 2; ///< Max number of points in hull
// Constants
static constexpr int cMaxEdgeLength = 128; ///< Max number of edges in FindEdge
static constexpr float cMinTriangleArea = 1.0e-10f; ///< Minimum area of a triangle before, if smaller than this it will not be added to the priority queue
static constexpr float cBarycentricEpsilon = 1.0e-3f; ///< Epsilon value used to determine if a point is in the interior of a triangle
// Forward declare
class Triangle;
/// Class that holds the information of an edge
class Edge
{
public:
/// Information about neighbouring triangle
Triangle * mNeighbourTriangle; ///< Triangle that neighbours this triangle
int mNeighbourEdge; ///< Index in mEdge that specifies edge that this Edge is connected to
int mStartIdx; ///< Vertex index in mPositions that indicates the start vertex of this edge
};
using Edges = StaticArray<Edge, cMaxEdgeLength>;
using NewTriangles = StaticArray<Triangle *, cMaxEdgeLength>;
/// Class that holds the information of one triangle
class Triangle : public NonCopyable
{
public:
/// Constructor
inline Triangle(int inIdx0, int inIdx1, int inIdx2, const Vec3 *inPositions);
/// Check if triangle is facing inPosition
inline bool IsFacing(Vec3Arg inPosition) const
{
JPH_ASSERT(!mRemoved);
return mNormal.Dot(inPosition - mCentroid) > 0.0f;
}
/// Check if triangle is facing the origin
inline bool IsFacingOrigin() const
{
JPH_ASSERT(!mRemoved);
return mNormal.Dot(mCentroid) < 0.0f;
}
/// Get the next edge of edge inIndex
inline const Edge & GetNextEdge(int inIndex) const
{
return mEdge[(inIndex + 1) % 3];
}
Edge mEdge[3]; ///< 3 edges of this triangle
Vec3 mNormal; ///< Normal of this triangle, length is 2 times area of triangle
Vec3 mCentroid; ///< Center of the triangle
float mClosestLenSq = FLT_MAX; ///< Closest distance^2 from origin to triangle
float mLambda[2]; ///< Barycentric coordinates of closest point to origin on triangle
bool mLambdaRelativeTo0; ///< How to calculate the closest point, true: y0 + l0 * (y1 - y0) + l1 * (y2 - y0), false: y1 + l0 * (y0 - y1) + l1 * (y2 - y1)
bool mClosestPointInterior = false; ///< Flag that indicates that the closest point from this triangle to the origin is an interior point
bool mRemoved = false; ///< Flag that indicates that triangle has been removed
bool mInQueue = false; ///< Flag that indicates that this triangle was placed in the sorted heap (stays true after it is popped because the triangle is freed by the main EPA algorithm loop)
#ifdef JPH_EPA_CONVEX_BUILDER_DRAW
int mIteration; ///< Iteration that this triangle was created
#endif
};
/// Factory that creates triangles in a fixed size buffer
class TriangleFactory : public NonCopyable
{
private:
/// Struct that stores both a triangle or a next pointer in case the triangle is unused
union alignas(Triangle) Block
{
uint8 mTriangle[sizeof(Triangle)];
Block * mNextFree;
};
/// Storage for triangle data
Block mTriangles[cMaxTriangles]; ///< Storage for triangles
Block * mNextFree = nullptr; ///< List of free triangles
int mHighWatermark = 0; ///< High water mark for used triangles (if mNextFree == nullptr we can take one from here)
public:
/// Return all triangles to the free pool
void Clear()
{
mNextFree = nullptr;
mHighWatermark = 0;
}
/// Allocate a new triangle with 3 indexes
Triangle * CreateTriangle(int inIdx0, int inIdx1, int inIdx2, const Vec3 *inPositions)
{
Triangle *t;
if (mNextFree != nullptr)
{
// Entry available from the free list
t = reinterpret_cast<Triangle *>(&mNextFree->mTriangle);
mNextFree = mNextFree->mNextFree;
}
else
{
// Allocate from never used before triangle store
if (mHighWatermark >= cMaxTriangles)
return nullptr; // Buffer full
t = reinterpret_cast<Triangle *>(&mTriangles[mHighWatermark].mTriangle);
++mHighWatermark;
}
// Call constructor
new (t) Triangle(inIdx0, inIdx1, inIdx2, inPositions);
return t;
}
/// Free a triangle
void FreeTriangle(Triangle *inT)
{
// Destruct triangle
inT->~Triangle();
#ifdef JPH_DEBUG
memset(inT, 0xcd, sizeof(Triangle));
#endif
// Add triangle to the free list
Block *tu = reinterpret_cast<Block *>(inT);
tu->mNextFree = mNextFree;
mNextFree = tu;
}
};
// Typedefs
using PointsBase = StaticArray<Vec3, cMaxPoints>;
using Triangles = StaticArray<Triangle *, cMaxTriangles>;
/// Specialized points list that allows direct access to the size
class Points : public PointsBase
{
public:
size_type & GetSizeRef()
{
return mSize;
}
};
/// Specialized triangles list that keeps them sorted on closest distance to origin
class TriangleQueue : public Triangles
{
public:
/// Function to sort triangles on closest distance to origin
static bool sTriangleSorter(const Triangle *inT1, const Triangle *inT2)
{
return inT1->mClosestLenSq > inT2->mClosestLenSq;
}
/// Add triangle to the list
void push_back(Triangle *inT)
{
// Add to base
Triangles::push_back(inT);
// Mark in queue
inT->mInQueue = true;
// Resort heap
BinaryHeapPush(begin(), end(), sTriangleSorter);
}
/// Peek the next closest triangle without removing it
Triangle * PeekClosest()
{
return front();
}
/// Get next closest triangle
Triangle * PopClosest()
{
// Move closest to end
BinaryHeapPop(begin(), end(), sTriangleSorter);
// Remove last triangle
Triangle *t = back();
pop_back();
return t;
}
};
/// Constructor
explicit EPAConvexHullBuilder(const Points &inPositions) :
mPositions(inPositions)
{
#ifdef JPH_EPA_CONVEX_BUILDER_DRAW
mIteration = 0;
mOffset = RVec3::sZero();
#endif
}
/// Initialize the hull with 3 points
void Initialize(int inIdx1, int inIdx2, int inIdx3)
{
// Release triangles
mFactory.Clear();
// Create triangles (back to back)
Triangle *t1 = CreateTriangle(inIdx1, inIdx2, inIdx3);
Triangle *t2 = CreateTriangle(inIdx1, inIdx3, inIdx2);
// Link triangles edges
sLinkTriangle(t1, 0, t2, 2);
sLinkTriangle(t1, 1, t2, 1);
sLinkTriangle(t1, 2, t2, 0);
// Always add both triangles to the priority queue
mTriangleQueue.push_back(t1);
mTriangleQueue.push_back(t2);
#ifdef JPH_EPA_CONVEX_BUILDER_DRAW
// Draw current state
DrawState();
// Increment iteration counter
++mIteration;
#endif
}
/// Check if there's another triangle to process from the queue
bool HasNextTriangle() const
{
return !mTriangleQueue.empty();
}
/// Access to the next closest triangle to the origin (won't remove it from the queue).
Triangle * PeekClosestTriangleInQueue()
{
return mTriangleQueue.PeekClosest();
}
/// Access to the next closest triangle to the origin and remove it from the queue.
Triangle * PopClosestTriangleFromQueue()
{
return mTriangleQueue.PopClosest();
}
/// Find the triangle on which inPosition is the furthest to the front
/// Note this function works as long as all points added have been added with AddPoint(..., FLT_MAX).
Triangle * FindFacingTriangle(Vec3Arg inPosition, float &outBestDistSq)
{
Triangle *best = nullptr;
float best_dist_sq = 0.0f;
for (Triangle *t : mTriangleQueue)
if (!t->mRemoved)
{
float dot = t->mNormal.Dot(inPosition - t->mCentroid);
if (dot > 0.0f)
{
float dist_sq = dot * dot / t->mNormal.LengthSq();
if (dist_sq > best_dist_sq)
{
best = t;
best_dist_sq = dist_sq;
}
}
}
outBestDistSq = best_dist_sq;
return best;
}
/// Add a new point to the convex hull
bool AddPoint(Triangle *inFacingTriangle, int inIdx, float inClosestDistSq, NewTriangles &outTriangles)
{
// Get position
Vec3 pos = mPositions[inIdx];
#ifdef JPH_EPA_CONVEX_BUILDER_DRAW
// Draw new support point
DrawMarker(pos, Color::sYellow, 1.0f);
#endif
#ifdef JPH_EPA_CONVEX_BUILDER_VALIDATE
// Check if structure is intact
ValidateTriangles();
#endif
// Find edge of convex hull of triangles that are not facing the new vertex w
Edges edges;
if (!FindEdge(inFacingTriangle, pos, edges))
return false;
// Create new triangles
int num_edges = edges.size();
for (int i = 0; i < num_edges; ++i)
{
// Create new triangle
Triangle *nt = CreateTriangle(edges[i].mStartIdx, edges[(i + 1) % num_edges].mStartIdx, inIdx);
if (nt == nullptr)
return false;
outTriangles.push_back(nt);
// Check if we need to put this triangle in the priority queue
if ((nt->mClosestPointInterior && nt->mClosestLenSq < inClosestDistSq) // For the main algorithm
|| nt->mClosestLenSq < 0.0f) // For when the origin is not inside the hull yet
mTriangleQueue.push_back(nt);
}
// Link edges
for (int i = 0; i < num_edges; ++i)
{
sLinkTriangle(outTriangles[i], 0, edges[i].mNeighbourTriangle, edges[i].mNeighbourEdge);
sLinkTriangle(outTriangles[i], 1, outTriangles[(i + 1) % num_edges], 2);
}
#ifdef JPH_EPA_CONVEX_BUILDER_VALIDATE
// Check if structure is intact
ValidateTriangles();
#endif
#ifdef JPH_EPA_CONVEX_BUILDER_DRAW
// Draw state of the hull
DrawState();
// Increment iteration counter
++mIteration;
#endif
return true;
}
/// Free a triangle
void FreeTriangle(Triangle *inT)
{
#ifdef JPH_ENABLE_ASSERTS
// Make sure that this triangle is not connected
JPH_ASSERT(inT->mRemoved);
for (const Edge &e : inT->mEdge)
JPH_ASSERT(e.mNeighbourTriangle == nullptr);
#endif
#if defined(JPH_EPA_CONVEX_BUILDER_VALIDATE) || defined(JPH_EPA_CONVEX_BUILDER_DRAW)
// Remove from list of all triangles
Triangles::iterator i = std::find(mTriangles.begin(), mTriangles.end(), inT);
JPH_ASSERT(i != mTriangles.end());
mTriangles.erase(i);
#endif
mFactory.FreeTriangle(inT);
}
private:
/// Create a new triangle
Triangle * CreateTriangle(int inIdx1, int inIdx2, int inIdx3)
{
// Call provider to create triangle
Triangle *t = mFactory.CreateTriangle(inIdx1, inIdx2, inIdx3, mPositions.data());
if (t == nullptr)
return nullptr;
#ifdef JPH_EPA_CONVEX_BUILDER_DRAW
// Remember iteration counter
t->mIteration = mIteration;
#endif
#if defined(JPH_EPA_CONVEX_BUILDER_VALIDATE) || defined(JPH_EPA_CONVEX_BUILDER_DRAW)
// Add to list of triangles for debugging purposes
mTriangles.push_back(t);
#endif
return t;
}
/// Link triangle edge to other triangle edge
static void sLinkTriangle(Triangle *inT1, int inEdge1, Triangle *inT2, int inEdge2)
{
JPH_ASSERT(inEdge1 >= 0 && inEdge1 < 3);
JPH_ASSERT(inEdge2 >= 0 && inEdge2 < 3);
Edge &e1 = inT1->mEdge[inEdge1];
Edge &e2 = inT2->mEdge[inEdge2];
// Check not connected yet
JPH_ASSERT(e1.mNeighbourTriangle == nullptr);
JPH_ASSERT(e2.mNeighbourTriangle == nullptr);
// Check vertices match
JPH_ASSERT(e1.mStartIdx == inT2->GetNextEdge(inEdge2).mStartIdx);
JPH_ASSERT(e2.mStartIdx == inT1->GetNextEdge(inEdge1).mStartIdx);
// Link up
e1.mNeighbourTriangle = inT2;
e1.mNeighbourEdge = inEdge2;
e2.mNeighbourTriangle = inT1;
e2.mNeighbourEdge = inEdge1;
}
/// Unlink this triangle
void UnlinkTriangle(Triangle *inT)
{
// Unlink from neighbours
for (int i = 0; i < 3; ++i)
{
Edge &edge = inT->mEdge[i];
if (edge.mNeighbourTriangle != nullptr)
{
Edge &neighbour_edge = edge.mNeighbourTriangle->mEdge[edge.mNeighbourEdge];
// Validate that neighbour points to us
JPH_ASSERT(neighbour_edge.mNeighbourTriangle == inT);
JPH_ASSERT(neighbour_edge.mNeighbourEdge == i);
// Unlink
neighbour_edge.mNeighbourTriangle = nullptr;
edge.mNeighbourTriangle = nullptr;
}
}
// If this triangle is not in the priority queue, we can delete it now
if (!inT->mInQueue)
FreeTriangle(inT);
}
/// Given one triangle that faces inVertex, find the edges of the triangles that are not facing inVertex.
/// Will flag all those triangles for removal.
bool FindEdge(Triangle *inFacingTriangle, Vec3Arg inVertex, Edges &outEdges)
{
// Assert that we were given an empty array
JPH_ASSERT(outEdges.empty());
// Should start with a facing triangle
JPH_ASSERT(inFacingTriangle->IsFacing(inVertex));
// Flag as removed
inFacingTriangle->mRemoved = true;
// Instead of recursing, we build our own stack with the information we need
struct StackEntry
{
Triangle * mTriangle;
int mEdge;
int mIter;
};
StackEntry stack[cMaxEdgeLength];
int cur_stack_pos = 0;
// Start with the triangle / edge provided
stack[0].mTriangle = inFacingTriangle;
stack[0].mEdge = 0;
stack[0].mIter = -1; // Start with edge 0 (is incremented below before use)
// Next index that we expect to find, if we don't then there are 'islands'
int next_expected_start_idx = -1;
for (;;)
{
StackEntry &cur_entry = stack[cur_stack_pos];
// Next iteration
if (++cur_entry.mIter >= 3)
{
// This triangle needs to be removed, unlink it now
UnlinkTriangle(cur_entry.mTriangle);
// Pop from stack
if (--cur_stack_pos < 0)
break;
}
else
{
// Visit neighbour
Edge &e = cur_entry.mTriangle->mEdge[(cur_entry.mEdge + cur_entry.mIter) % 3];
Triangle *n = e.mNeighbourTriangle;
if (n != nullptr && !n->mRemoved)
{
// Check if vertex is on the front side of this triangle
if (n->IsFacing(inVertex))
{
// Vertex on front, this triangle needs to be removed
n->mRemoved = true;
// Add element to the stack of elements to visit
cur_stack_pos++;
JPH_ASSERT(cur_stack_pos < cMaxEdgeLength);
StackEntry &new_entry = stack[cur_stack_pos];
new_entry.mTriangle = n;
new_entry.mEdge = e.mNeighbourEdge;
new_entry.mIter = 0; // Is incremented before use, we don't need to test this edge again since we came from it
}
else
{
// Detect if edge doesn't connect to previous edge, if this happens we have found and 'island' which means
// the newly added point is so close to the triangles of the hull that we classified some (nearly) coplanar
// triangles as before and some behind the point. At this point we just abort adding the point because
// we've reached numerical precision.
// Note that we do not need to test if the first and last edge connect, since when there are islands
// there should be at least 2 disconnects.
if (e.mStartIdx != next_expected_start_idx && next_expected_start_idx != -1)
return false;
// Next expected index is the start index of our neighbour's edge
next_expected_start_idx = n->mEdge[e.mNeighbourEdge].mStartIdx;
// Vertex behind, keep edge
outEdges.push_back(e);
}
}
}
}
// Assert that we have a fully connected loop
JPH_ASSERT(outEdges.empty() || outEdges[0].mStartIdx == next_expected_start_idx);
#ifdef JPH_EPA_CONVEX_BUILDER_DRAW
// Draw edge of facing triangles
for (int i = 0; i < (int)outEdges.size(); ++i)
{
RVec3 edge_start = cDrawScale * (mOffset + mPositions[outEdges[i].mStartIdx]);
DebugRenderer::sInstance->DrawArrow(edge_start, cDrawScale * (mOffset + mPositions[outEdges[(i + 1) % outEdges.size()].mStartIdx]), Color::sYellow, 0.01f);
DebugRenderer::sInstance->DrawText3D(edge_start, ConvertToString(outEdges[i].mStartIdx), Color::sWhite);
}
// Draw the state with the facing triangles removed
DrawState();
#endif
// When we start with two triangles facing away from each other and adding a point that is on the plane,
// sometimes we consider the point in front of both causing both triangles to be removed resulting in an empty edge list.
// In this case we fail to add the point which will result in no collision reported (the shapes are contacting in 1 point so there's 0 penetration)
return outEdges.size() >= 3;
}
#ifdef JPH_EPA_CONVEX_BUILDER_VALIDATE
/// Check consistency of 1 triangle
void ValidateTriangle(const Triangle *inT) const
{
if (inT->mRemoved)
{
// Validate that removed triangles are not connected to anything
for (const Edge &my_edge : inT->mEdge)
JPH_ASSERT(my_edge.mNeighbourTriangle == nullptr);
}
else
{
for (int i = 0; i < 3; ++i)
{
const Edge &my_edge = inT->mEdge[i];
// Assert that we have a neighbour
const Triangle *nb = my_edge.mNeighbourTriangle;
JPH_ASSERT(nb != nullptr);
if (nb != nullptr)
{
// Assert that our neighbours edge points to us
const Edge &nb_edge = nb->mEdge[my_edge.mNeighbourEdge];
JPH_ASSERT(nb_edge.mNeighbourTriangle == inT);
JPH_ASSERT(nb_edge.mNeighbourEdge == i);
// Assert that the next edge of the neighbour points to the same vertex as this edge's vertex
const Edge &nb_next_edge = nb->GetNextEdge(my_edge.mNeighbourEdge);
JPH_ASSERT(nb_next_edge.mStartIdx == my_edge.mStartIdx);
// Assert that my next edge points to the same vertex as my neighbours vertex
const Edge &my_next_edge = inT->GetNextEdge(i);
JPH_ASSERT(my_next_edge.mStartIdx == nb_edge.mStartIdx);
}
}
}
}
/// Check consistency of all triangles
void ValidateTriangles() const
{
for (const Triangle *t : mTriangles)
ValidateTriangle(t);
}
#endif
#ifdef JPH_EPA_CONVEX_BUILDER_DRAW
public:
/// Draw state of algorithm
void DrawState()
{
// Draw origin
DebugRenderer::sInstance->DrawCoordinateSystem(RMat44::sTranslation(cDrawScale * mOffset), 1.0f);
// Draw triangles
for (const Triangle *t : mTriangles)
if (!t->mRemoved)
{
// Calculate the triangle vertices
RVec3 p1 = cDrawScale * (mOffset + mPositions[t->mEdge[0].mStartIdx]);
RVec3 p2 = cDrawScale * (mOffset + mPositions[t->mEdge[1].mStartIdx]);
RVec3 p3 = cDrawScale * (mOffset + mPositions[t->mEdge[2].mStartIdx]);
// Draw triangle
DebugRenderer::sInstance->DrawTriangle(p1, p2, p3, Color::sGetDistinctColor(t->mIteration));
DebugRenderer::sInstance->DrawWireTriangle(p1, p2, p3, Color::sGrey);
// Draw normal
RVec3 centroid = cDrawScale * (mOffset + t->mCentroid);
float len = t->mNormal.Length();
if (len > 0.0f)
DebugRenderer::sInstance->DrawArrow(centroid, centroid + t->mNormal / len, Color::sDarkGreen, 0.01f);
}
// Determine max position
float min_x = FLT_MAX;
float max_x = -FLT_MAX;
for (Vec3 p : mPositions)
{
min_x = min(min_x, p.GetX());
max_x = max(max_x, p.GetX());
}
// Offset to the right
mOffset += Vec3(max_x - min_x + 0.5f, 0.0f, 0.0f);
}
/// Draw a label to indicate the next stage in the algorithm
void DrawLabel(const string_view &inText)
{
DebugRenderer::sInstance->DrawText3D(cDrawScale * mOffset, inText, Color::sWhite, 0.1f * cDrawScale);
mOffset += Vec3(5.0f, 0.0f, 0.0f);
}
/// Draw geometry for debugging purposes
void DrawGeometry(const DebugRenderer::GeometryRef &inGeometry, ColorArg inColor)
{
RMat44 origin = RMat44::sScale(Vec3::sReplicate(cDrawScale)) * RMat44::sTranslation(mOffset);
DebugRenderer::sInstance->DrawGeometry(origin, inGeometry->mBounds.Transformed(origin), inGeometry->mBounds.GetExtent().LengthSq(), inColor, inGeometry);
mOffset += Vec3(inGeometry->mBounds.GetSize().GetX(), 0, 0);
}
/// Draw a triangle for debugging purposes
void DrawWireTriangle(const Triangle &inTriangle, ColorArg inColor)
{
RVec3 prev = cDrawScale * (mOffset + mPositions[inTriangle.mEdge[2].mStartIdx]);
for (const Edge &edge : inTriangle.mEdge)
{
RVec3 cur = cDrawScale * (mOffset + mPositions[edge.mStartIdx]);
DebugRenderer::sInstance->DrawArrow(prev, cur, inColor, 0.01f);
prev = cur;
}
}
/// Draw a marker for debugging purposes
void DrawMarker(Vec3Arg inPosition, ColorArg inColor, float inSize)
{
DebugRenderer::sInstance->DrawMarker(cDrawScale * (mOffset + inPosition), inColor, inSize);
}
/// Draw an arrow for debugging purposes
void DrawArrow(Vec3Arg inFrom, Vec3Arg inTo, ColorArg inColor, float inArrowSize)
{
DebugRenderer::sInstance->DrawArrow(cDrawScale * (mOffset + inFrom), cDrawScale * (mOffset + inTo), inColor, inArrowSize);
}
#endif
private:
TriangleFactory mFactory; ///< Factory to create new triangles and remove old ones
const Points & mPositions; ///< List of positions (some of them are part of the hull)
TriangleQueue mTriangleQueue; ///< List of triangles that are part of the hull that still need to be checked (if !mRemoved)
#if defined(JPH_EPA_CONVEX_BUILDER_VALIDATE) || defined(JPH_EPA_CONVEX_BUILDER_DRAW)
Triangles mTriangles; ///< The list of all triangles in this hull (for debug purposes)
#endif
#ifdef JPH_EPA_CONVEX_BUILDER_DRAW
int mIteration; ///< Number of iterations we've had so far (for debug purposes)
RVec3 mOffset; ///< Offset to use for state drawing
#endif
};
// The determinant that is calculated in the Triangle constructor is really sensitive
// to numerical round off, disable the fmadd instructions to maintain precision.
JPH_PRECISE_MATH_ON
EPAConvexHullBuilder::Triangle::Triangle(int inIdx0, int inIdx1, int inIdx2, const Vec3 *inPositions)
{
// Fill in indexes
JPH_ASSERT(inIdx0 != inIdx1 && inIdx0 != inIdx2 && inIdx1 != inIdx2);
mEdge[0].mStartIdx = inIdx0;
mEdge[1].mStartIdx = inIdx1;
mEdge[2].mStartIdx = inIdx2;
// Clear links
mEdge[0].mNeighbourTriangle = nullptr;
mEdge[1].mNeighbourTriangle = nullptr;
mEdge[2].mNeighbourTriangle = nullptr;
// Get vertex positions
Vec3 y0 = inPositions[inIdx0];
Vec3 y1 = inPositions[inIdx1];
Vec3 y2 = inPositions[inIdx2];
// Calculate centroid
mCentroid = (y0 + y1 + y2) / 3.0f;
// Calculate edges
Vec3 y10 = y1 - y0;
Vec3 y20 = y2 - y0;
Vec3 y21 = y2 - y1;
// The most accurate normal is calculated by using the two shortest edges
// See: https://box2d.org/posts/2014/01/troublesome-triangle/
// The difference in normals is most pronounced when one edge is much smaller than the others (in which case the other 2 must have roughly the same length).
// Therefore we can suffice by just picking the shortest from 2 edges and use that with the 3rd edge to calculate the normal.
// We first check which of the edges is shorter.
float y20_dot_y20 = y20.Dot(y20);
float y21_dot_y21 = y21.Dot(y21);
if (y20_dot_y20 < y21_dot_y21)
{
// We select the edges y10 and y20
mNormal = y10.Cross(y20);
// Check if triangle is degenerate
float normal_len_sq = mNormal.LengthSq();
if (normal_len_sq > cMinTriangleArea)
{
// Determine distance between triangle and origin: distance = (centroid - origin) . normal / |normal|
// Note that this way of calculating the closest point is much more accurate than first calculating barycentric coordinates and then calculating the closest
// point based on those coordinates. Note that we preserve the sign of the distance to check on which side the origin is.
float c_dot_n = mCentroid.Dot(mNormal);
mClosestLenSq = abs(c_dot_n) * c_dot_n / normal_len_sq;
// Calculate closest point to origin using barycentric coordinates:
//
// v = y0 + l0 * (y1 - y0) + l1 * (y2 - y0)
// v . (y1 - y0) = 0
// v . (y2 - y0) = 0
//
// Written in matrix form:
//
// | y10.y10 y20.y10 | | l0 | = | -y0.y10 |
// | y10.y20 y20.y20 | | l1 | | -y0.y20 |
//
// (y10 = y1 - y0 etc.)
//
// Cramers rule to invert matrix:
float y10_dot_y10 = y10.LengthSq();
float y10_dot_y20 = y10.Dot(y20);
float determinant = y10_dot_y10 * y20_dot_y20 - y10_dot_y20 * y10_dot_y20;
if (determinant > 0.0f) // If determinant == 0 then the system is linearly dependent and the triangle is degenerate, since y10.10 * y20.y20 > y10.y20^2 it should also be > 0
{
float y0_dot_y10 = y0.Dot(y10);
float y0_dot_y20 = y0.Dot(y20);
float l0 = (y10_dot_y20 * y0_dot_y20 - y20_dot_y20 * y0_dot_y10) / determinant;
float l1 = (y10_dot_y20 * y0_dot_y10 - y10_dot_y10 * y0_dot_y20) / determinant;
mLambda[0] = l0;
mLambda[1] = l1;
mLambdaRelativeTo0 = true;
// Check if closest point is interior to the triangle. For a convex hull which contains the origin each face must contain the origin, but because
// our faces are triangles, we can have multiple coplanar triangles and only 1 will have the origin as an interior point. We want to use this triangle
// to calculate the contact points because it gives the most accurate results, so we will only add these triangles to the priority queue.
if (l0 > -cBarycentricEpsilon && l1 > -cBarycentricEpsilon && l0 + l1 < 1.0f + cBarycentricEpsilon)
mClosestPointInterior = true;
}
}
}
else
{
// We select the edges y10 and y21
mNormal = y10.Cross(y21);
// Check if triangle is degenerate
float normal_len_sq = mNormal.LengthSq();
if (normal_len_sq > cMinTriangleArea)
{
// Again calculate distance between triangle and origin
float c_dot_n = mCentroid.Dot(mNormal);
mClosestLenSq = abs(c_dot_n) * c_dot_n / normal_len_sq;
// Calculate closest point to origin using barycentric coordinates but this time using y1 as the reference vertex
//
// v = y1 + l0 * (y0 - y1) + l1 * (y2 - y1)
// v . (y0 - y1) = 0
// v . (y2 - y1) = 0
//
// Written in matrix form:
//
// | y10.y10 -y21.y10 | | l0 | = | y1.y10 |
// | -y10.y21 y21.y21 | | l1 | | -y1.y21 |
//
// Cramers rule to invert matrix:
float y10_dot_y10 = y10.LengthSq();
float y10_dot_y21 = y10.Dot(y21);
float determinant = y10_dot_y10 * y21_dot_y21 - y10_dot_y21 * y10_dot_y21;
if (determinant > 0.0f)
{
float y1_dot_y10 = y1.Dot(y10);
float y1_dot_y21 = y1.Dot(y21);
float l0 = (y21_dot_y21 * y1_dot_y10 - y10_dot_y21 * y1_dot_y21) / determinant;
float l1 = (y10_dot_y21 * y1_dot_y10 - y10_dot_y10 * y1_dot_y21) / determinant;
mLambda[0] = l0;
mLambda[1] = l1;
mLambdaRelativeTo0 = false;
// Again check if the closest point is inside the triangle
if (l0 > -cBarycentricEpsilon && l1 > -cBarycentricEpsilon && l0 + l1 < 1.0f + cBarycentricEpsilon)
mClosestPointInterior = true;
}
}
}
}
JPH_PRECISE_MATH_OFF
JPH_NAMESPACE_END

View File

@@ -0,0 +1,559 @@
// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#pragma once
#include <Jolt/Core/StaticArray.h>
#include <Jolt/Core/Profiler.h>
#include <Jolt/Geometry/GJKClosestPoint.h>
#include <Jolt/Geometry/EPAConvexHullBuilder.h>
//#define JPH_EPA_PENETRATION_DEPTH_DEBUG
JPH_NAMESPACE_BEGIN
/// Implementation of Expanding Polytope Algorithm as described in:
///
/// Proximity Queries and Penetration Depth Computation on 3D Game Objects - Gino van den Bergen
///
/// The implementation of this algorithm does not completely follow the article, instead of splitting
/// triangles at each edge as in fig. 7 in the article, we build a convex hull (removing any triangles that
/// are facing the new point, thereby avoiding the problem of getting really oblong triangles as mentioned in
/// the article).
///
/// The algorithm roughly works like:
///
/// - Start with a simplex of the Minkowski sum (difference) of two objects that was calculated by GJK
/// - This simplex should contain the origin (or else GJK would have reported: no collision)
/// - In cases where the simplex consists of 1 - 3 points, find some extra support points (of the Minkowski sum) to get to at least 4 points
/// - Convert this into a convex hull with non-zero volume (which includes the origin)
/// - A: Calculate the closest point to the origin for all triangles of the hull and take the closest one
/// - Calculate a new support point (of the Minkowski sum) in this direction and add this point to the convex hull
/// - This will remove all faces that are facing the new point and will create new triangles to fill up the hole
/// - Loop to A until no closer point found
/// - The closest point indicates the position / direction of least penetration
class EPAPenetrationDepth
{
private:
// Typedefs
static constexpr int cMaxPoints = EPAConvexHullBuilder::cMaxPoints;
static constexpr int cMaxPointsToIncludeOriginInHull = 32;
static_assert(cMaxPointsToIncludeOriginInHull < cMaxPoints);
using Triangle = EPAConvexHullBuilder::Triangle;
using Points = EPAConvexHullBuilder::Points;
/// The GJK algorithm, used to start the EPA algorithm
GJKClosestPoint mGJK;
#ifdef JPH_ENABLE_ASSERTS
/// Tolerance as passed to the GJK algorithm, used for asserting.
float mGJKTolerance = 0.0f;
#endif // JPH_ENABLE_ASSERTS
/// A list of support points for the EPA algorithm
class SupportPoints
{
public:
/// List of support points
Points mY;
Vec3 mP[cMaxPoints];
Vec3 mQ[cMaxPoints];
/// Calculate and add new support point to the list of points
template <typename A, typename B>
Vec3 Add(const A &inA, const B &inB, Vec3Arg inDirection, int &outIndex)
{
// Get support point of the minkowski sum A - B
Vec3 p = inA.GetSupport(inDirection);
Vec3 q = inB.GetSupport(-inDirection);
Vec3 w = p - q;
// Store new point
outIndex = mY.size();
mY.push_back(w);
mP[outIndex] = p;
mQ[outIndex] = q;
return w;
}
};
public:
/// Return code for GetPenetrationDepthStepGJK
enum class EStatus
{
NotColliding, ///< Returned if the objects don't collide, in this case outPointA/outPointB are invalid
Colliding, ///< Returned if the objects penetrate
Indeterminate ///< Returned if the objects penetrate further than the convex radius. In this case you need to call GetPenetrationDepthStepEPA to get the actual penetration depth.
};
/// Calculates penetration depth between two objects, first step of two (the GJK step)
///
/// @param inAExcludingConvexRadius Object A without convex radius.
/// @param inBExcludingConvexRadius Object B without convex radius.
/// @param inConvexRadiusA Convex radius for A.
/// @param inConvexRadiusB Convex radius for B.
/// @param ioV Pass in previously returned value or (1, 0, 0). On return this value is changed to direction to move B out of collision along the shortest path (magnitude is meaningless).
/// @param inTolerance Minimal distance before A and B are considered colliding.
/// @param outPointA Position on A that has the least amount of penetration.
/// @param outPointB Position on B that has the least amount of penetration.
/// Use |outPointB - outPointA| to get the distance of penetration.
template <typename AE, typename BE>
EStatus GetPenetrationDepthStepGJK(const AE &inAExcludingConvexRadius, float inConvexRadiusA, const BE &inBExcludingConvexRadius, float inConvexRadiusB, float inTolerance, Vec3 &ioV, Vec3 &outPointA, Vec3 &outPointB)
{
JPH_PROFILE_FUNCTION();
JPH_IF_ENABLE_ASSERTS(mGJKTolerance = inTolerance;)
// Don't supply a zero ioV, we only want to get points on the hull of the Minkowsky sum and not internal points.
//
// Note that if the assert below triggers, it is very likely that you have a MeshShape that contains a degenerate triangle (e.g. a sliver).
// Go up a couple of levels in the call stack to see if we're indeed testing a triangle and if it is degenerate.
// If this is the case then fix the triangles you supply to the MeshShape.
JPH_ASSERT(!ioV.IsNearZero());
// Get closest points
float combined_radius = inConvexRadiusA + inConvexRadiusB;
float combined_radius_sq = combined_radius * combined_radius;
float closest_points_dist_sq = mGJK.GetClosestPoints(inAExcludingConvexRadius, inBExcludingConvexRadius, inTolerance, combined_radius_sq, ioV, outPointA, outPointB);
if (closest_points_dist_sq > combined_radius_sq)
{
// No collision
return EStatus::NotColliding;
}
if (closest_points_dist_sq > 0.0f)
{
// Collision within convex radius, adjust points for convex radius
float v_len = sqrt(closest_points_dist_sq); // GetClosestPoints function returns |ioV|^2 when return value < FLT_MAX
outPointA += ioV * (inConvexRadiusA / v_len);
outPointB -= ioV * (inConvexRadiusB / v_len);
return EStatus::Colliding;
}
return EStatus::Indeterminate;
}
/// Calculates penetration depth between two objects, second step (the EPA step)
///
/// @param inAIncludingConvexRadius Object A with convex radius
/// @param inBIncludingConvexRadius Object B with convex radius
/// @param inTolerance A factor that determines the accuracy of the result. If the change of the squared distance is less than inTolerance * current_penetration_depth^2 the algorithm will terminate. Should be bigger or equal to FLT_EPSILON.
/// @param outV Direction to move B out of collision along the shortest path (magnitude is meaningless)
/// @param outPointA Position on A that has the least amount of penetration
/// @param outPointB Position on B that has the least amount of penetration
/// Use |outPointB - outPointA| to get the distance of penetration
///
/// @return False if the objects don't collide, in this case outPointA/outPointB are invalid.
/// True if the objects penetrate
template <typename AI, typename BI>
bool GetPenetrationDepthStepEPA(const AI &inAIncludingConvexRadius, const BI &inBIncludingConvexRadius, float inTolerance, Vec3 &outV, Vec3 &outPointA, Vec3 &outPointB)
{
JPH_PROFILE_FUNCTION();
// Check that the tolerance makes sense (smaller value than this will just result in needless iterations)
JPH_ASSERT(inTolerance >= FLT_EPSILON);
// Fetch the simplex from GJK algorithm
SupportPoints support_points;
mGJK.GetClosestPointsSimplex(support_points.mY.data(), support_points.mP, support_points.mQ, support_points.mY.GetSizeRef());
// Fill up the amount of support points to 4
switch (support_points.mY.size())
{
case 1:
{
// 1 vertex, which must be at the origin, which is useless for our purpose
JPH_ASSERT(support_points.mY[0].IsNearZero(Square(mGJKTolerance)));
support_points.mY.pop_back();
// Add support points in 4 directions to form a tetrahedron around the origin
int p1, p2, p3, p4;
(void)support_points.Add(inAIncludingConvexRadius, inBIncludingConvexRadius, Vec3(0, 1, 0), p1);
(void)support_points.Add(inAIncludingConvexRadius, inBIncludingConvexRadius, Vec3(-1, -1, -1), p2);
(void)support_points.Add(inAIncludingConvexRadius, inBIncludingConvexRadius, Vec3(1, -1, -1), p3);
(void)support_points.Add(inAIncludingConvexRadius, inBIncludingConvexRadius, Vec3(0, -1, 1), p4);
JPH_ASSERT(p1 == 0);
JPH_ASSERT(p2 == 1);
JPH_ASSERT(p3 == 2);
JPH_ASSERT(p4 == 3);
break;
}
case 2:
{
// Two vertices, create 3 extra by taking perpendicular axis and rotating it around in 120 degree increments
Vec3 axis = (support_points.mY[1] - support_points.mY[0]).Normalized();
Mat44 rotation = Mat44::sRotation(axis, DegreesToRadians(120.0f));
Vec3 dir1 = axis.GetNormalizedPerpendicular();
Vec3 dir2 = rotation * dir1;
Vec3 dir3 = rotation * dir2;
int p1, p2, p3;
(void)support_points.Add(inAIncludingConvexRadius, inBIncludingConvexRadius, dir1, p1);
(void)support_points.Add(inAIncludingConvexRadius, inBIncludingConvexRadius, dir2, p2);
(void)support_points.Add(inAIncludingConvexRadius, inBIncludingConvexRadius, dir3, p3);
JPH_ASSERT(p1 == 2);
JPH_ASSERT(p2 == 3);
JPH_ASSERT(p3 == 4);
break;
}
case 3:
case 4:
// We already have enough points
break;
}
// Create hull out of the initial points
JPH_ASSERT(support_points.mY.size() >= 3);
EPAConvexHullBuilder hull(support_points.mY);
#ifdef JPH_EPA_CONVEX_BUILDER_DRAW
hull.DrawLabel("Build initial hull");
#endif
#ifdef JPH_EPA_PENETRATION_DEPTH_DEBUG
Trace("Init: num_points = %u", (uint)support_points.mY.size());
#endif
hull.Initialize(0, 1, 2);
for (typename Points::size_type i = 3; i < support_points.mY.size(); ++i)
{
float dist_sq;
Triangle *t = hull.FindFacingTriangle(support_points.mY[i], dist_sq);
if (t != nullptr)
{
EPAConvexHullBuilder::NewTriangles new_triangles;
if (!hull.AddPoint(t, i, FLT_MAX, new_triangles))
{
// We can't recover from a failure to add a point to the hull because the old triangles have been unlinked already.
// Assume no collision. This can happen if the shapes touch in 1 point (or plane) in which case the hull is degenerate.
return false;
}
}
}
#ifdef JPH_EPA_CONVEX_BUILDER_DRAW
hull.DrawLabel("Complete hull");
// Generate the hull of the Minkowski difference for visualization
MinkowskiDifference diff(inAIncludingConvexRadius, inBIncludingConvexRadius);
DebugRenderer::GeometryRef geometry = DebugRenderer::sInstance->CreateTriangleGeometryForConvex([&diff](Vec3Arg inDirection) { return diff.GetSupport(inDirection); });
hull.DrawGeometry(geometry, Color::sYellow);
hull.DrawLabel("Ensure origin in hull");
#endif
// Loop until we are sure that the origin is inside the hull
for (;;)
{
// Get the next closest triangle
Triangle *t = hull.PeekClosestTriangleInQueue();
// Don't process removed triangles, just free them (because they're in a heap we don't remove them earlier since we would have to rebuild the sorted heap)
if (t->mRemoved)
{
hull.PopClosestTriangleFromQueue();
// If we run out of triangles, we couldn't include the origin in the hull so there must be very little penetration and we report no collision.
if (!hull.HasNextTriangle())
return false;
hull.FreeTriangle(t);
continue;
}
// If the closest to the triangle is zero or positive, the origin is in the hull and we can proceed to the main algorithm
if (t->mClosestLenSq >= 0.0f)
break;
#ifdef JPH_EPA_CONVEX_BUILDER_DRAW
hull.DrawLabel("Next iteration");
#endif
#ifdef JPH_EPA_PENETRATION_DEPTH_DEBUG
Trace("EncapsulateOrigin: verts = (%d, %d, %d), closest_dist_sq = %g, centroid = (%g, %g, %g), normal = (%g, %g, %g)",
t->mEdge[0].mStartIdx, t->mEdge[1].mStartIdx, t->mEdge[2].mStartIdx,
t->mClosestLenSq,
t->mCentroid.GetX(), t->mCentroid.GetY(), t->mCentroid.GetZ(),
t->mNormal.GetX(), t->mNormal.GetY(), t->mNormal.GetZ());
#endif
// Remove the triangle from the queue before we start adding new ones (which may result in a new closest triangle at the front of the queue)
hull.PopClosestTriangleFromQueue();
// Add a support point to get the origin inside the hull
int new_index;
Vec3 w = support_points.Add(inAIncludingConvexRadius, inBIncludingConvexRadius, t->mNormal, new_index);
#ifdef JPH_EPA_CONVEX_BUILDER_DRAW
// Draw the point that we're adding
hull.DrawMarker(w, Color::sRed, 1.0f);
hull.DrawWireTriangle(*t, Color::sRed);
hull.DrawState();
#endif
// Add the point to the hull, if we fail we terminate and report no collision
EPAConvexHullBuilder::NewTriangles new_triangles;
if (!t->IsFacing(w) || !hull.AddPoint(t, new_index, FLT_MAX, new_triangles))
return false;
// The triangle is facing the support point "w" and can now be safely removed
JPH_ASSERT(t->mRemoved);
hull.FreeTriangle(t);
// If we run out of triangles or points, we couldn't include the origin in the hull so there must be very little penetration and we report no collision.
if (!hull.HasNextTriangle() || support_points.mY.size() >= cMaxPointsToIncludeOriginInHull)
return false;
}
#ifdef JPH_EPA_CONVEX_BUILDER_DRAW
hull.DrawLabel("Main algorithm");
#endif
// Current closest distance to origin
float closest_dist_sq = FLT_MAX;
// Remember last good triangle
Triangle *last = nullptr;
// If we want to flip the penetration depth
bool flip_v_sign = false;
// Loop until closest point found
do
{
// Get closest triangle to the origin
Triangle *t = hull.PopClosestTriangleFromQueue();
// Don't process removed triangles, just free them (because they're in a heap we don't remove them earlier since we would have to rebuild the sorted heap)
if (t->mRemoved)
{
hull.FreeTriangle(t);
continue;
}
#ifdef JPH_EPA_CONVEX_BUILDER_DRAW
hull.DrawLabel("Next iteration");
#endif
#ifdef JPH_EPA_PENETRATION_DEPTH_DEBUG
Trace("FindClosest: verts = (%d, %d, %d), closest_len_sq = %g, centroid = (%g, %g, %g), normal = (%g, %g, %g)",
t->mEdge[0].mStartIdx, t->mEdge[1].mStartIdx, t->mEdge[2].mStartIdx,
t->mClosestLenSq,
t->mCentroid.GetX(), t->mCentroid.GetY(), t->mCentroid.GetZ(),
t->mNormal.GetX(), t->mNormal.GetY(), t->mNormal.GetZ());
#endif
// Check if next triangle is further away than closest point, we've found the closest point
if (t->mClosestLenSq >= closest_dist_sq)
break;
// Replace last good with this triangle
if (last != nullptr)
hull.FreeTriangle(last);
last = t;
// Add support point in direction of normal of the plane
// Note that the article uses the closest point between the origin and plane, but this always has the exact same direction as the normal (if the origin is behind the plane)
// and this way we do less calculations and lose less precision
int new_index;
Vec3 w = support_points.Add(inAIncludingConvexRadius, inBIncludingConvexRadius, t->mNormal, new_index);
// Project w onto the triangle normal
float dot = t->mNormal.Dot(w);
// Check if we just found a separating axis. This can happen if the shape shrunk by convex radius and then expanded by
// convex radius is bigger then the original shape due to inaccuracies in the shrinking process.
if (dot < 0.0f)
return false;
// Get the distance squared (along normal) to the support point
float dist_sq = Square(dot) / t->mNormal.LengthSq();
#ifdef JPH_EPA_PENETRATION_DEPTH_DEBUG
Trace("FindClosest: w = (%g, %g, %g), dot = %g, dist_sq = %g",
w.GetX(), w.GetY(), w.GetZ(),
dot, dist_sq);
#endif
#ifdef JPH_EPA_CONVEX_BUILDER_DRAW
// Draw the point that we're adding
hull.DrawMarker(w, Color::sPurple, 1.0f);
hull.DrawWireTriangle(*t, Color::sPurple);
hull.DrawState();
#endif
// If the error became small enough, we've converged
if (dist_sq - t->mClosestLenSq < t->mClosestLenSq * inTolerance)
{
#ifdef JPH_EPA_PENETRATION_DEPTH_DEBUG
Trace("Converged");
#endif // JPH_EPA_PENETRATION_DEPTH_DEBUG
break;
}
// Keep track of the minimum distance
closest_dist_sq = min(closest_dist_sq, dist_sq);
// If the triangle thinks this point is not front facing, we've reached numerical precision and we're done
if (!t->IsFacing(w))
{
#ifdef JPH_EPA_PENETRATION_DEPTH_DEBUG
Trace("Not facing triangle");
#endif // JPH_EPA_PENETRATION_DEPTH_DEBUG
break;
}
// Add point to hull
EPAConvexHullBuilder::NewTriangles new_triangles;
if (!hull.AddPoint(t, new_index, closest_dist_sq, new_triangles))
{
#ifdef JPH_EPA_PENETRATION_DEPTH_DEBUG
Trace("Could not add point");
#endif // JPH_EPA_PENETRATION_DEPTH_DEBUG
break;
}
// If the hull is starting to form defects then we're reaching numerical precision and we have to stop
bool has_defect = false;
for (const Triangle *nt : new_triangles)
if (nt->IsFacingOrigin())
{
has_defect = true;
break;
}
if (has_defect)
{
#ifdef JPH_EPA_PENETRATION_DEPTH_DEBUG
Trace("Has defect");
#endif // JPH_EPA_PENETRATION_DEPTH_DEBUG
// When the hull has defects it is possible that the origin has been classified on the wrong side of the triangle
// so we do an additional check to see if the penetration in the -triangle normal direction is smaller than
// the penetration in the triangle normal direction. If so we must flip the sign of the penetration depth.
Vec3 w2 = inAIncludingConvexRadius.GetSupport(-t->mNormal) - inBIncludingConvexRadius.GetSupport(t->mNormal);
float dot2 = -t->mNormal.Dot(w2);
if (dot2 < dot)
flip_v_sign = true;
break;
}
}
while (hull.HasNextTriangle() && support_points.mY.size() < cMaxPoints);
// Determine closest points, if last == null it means the hull was a plane so there's no penetration
if (last == nullptr)
return false;
#ifdef JPH_EPA_CONVEX_BUILDER_DRAW
hull.DrawLabel("Closest found");
hull.DrawWireTriangle(*last, Color::sWhite);
hull.DrawArrow(last->mCentroid, last->mCentroid + last->mNormal.NormalizedOr(Vec3::sZero()), Color::sWhite, 0.1f);
hull.DrawState();
#endif
// Calculate penetration by getting the vector from the origin to the closest point on the triangle:
// distance = (centroid - origin) . normal / |normal|, closest = origin + distance * normal / |normal|
outV = (last->mCentroid.Dot(last->mNormal) / last->mNormal.LengthSq()) * last->mNormal;
// If penetration is near zero, treat this as a non collision since we cannot find a good normal
if (outV.IsNearZero())
return false;
// Check if we have to flip the sign of the penetration depth
if (flip_v_sign)
outV = -outV;
// Use the barycentric coordinates for the closest point to the origin to find the contact points on A and B
Vec3 p0 = support_points.mP[last->mEdge[0].mStartIdx];
Vec3 p1 = support_points.mP[last->mEdge[1].mStartIdx];
Vec3 p2 = support_points.mP[last->mEdge[2].mStartIdx];
Vec3 q0 = support_points.mQ[last->mEdge[0].mStartIdx];
Vec3 q1 = support_points.mQ[last->mEdge[1].mStartIdx];
Vec3 q2 = support_points.mQ[last->mEdge[2].mStartIdx];
if (last->mLambdaRelativeTo0)
{
// y0 was the reference vertex
outPointA = p0 + last->mLambda[0] * (p1 - p0) + last->mLambda[1] * (p2 - p0);
outPointB = q0 + last->mLambda[0] * (q1 - q0) + last->mLambda[1] * (q2 - q0);
}
else
{
// y1 was the reference vertex
outPointA = p1 + last->mLambda[0] * (p0 - p1) + last->mLambda[1] * (p2 - p1);
outPointB = q1 + last->mLambda[0] * (q0 - q1) + last->mLambda[1] * (q2 - q1);
}
return true;
}
/// This function combines the GJK and EPA steps and is provided as a convenience function.
/// Note: less performant since you're providing all support functions in one go
/// Note 2: You need to initialize ioV, see documentation at GetPenetrationDepthStepGJK!
template <typename AE, typename AI, typename BE, typename BI>
bool GetPenetrationDepth(const AE &inAExcludingConvexRadius, const AI &inAIncludingConvexRadius, float inConvexRadiusA, const BE &inBExcludingConvexRadius, const BI &inBIncludingConvexRadius, float inConvexRadiusB, float inCollisionToleranceSq, float inPenetrationTolerance, Vec3 &ioV, Vec3 &outPointA, Vec3 &outPointB)
{
// Check result of collision detection
switch (GetPenetrationDepthStepGJK(inAExcludingConvexRadius, inConvexRadiusA, inBExcludingConvexRadius, inConvexRadiusB, inCollisionToleranceSq, ioV, outPointA, outPointB))
{
case EPAPenetrationDepth::EStatus::Colliding:
return true;
case EPAPenetrationDepth::EStatus::NotColliding:
return false;
case EPAPenetrationDepth::EStatus::Indeterminate:
return GetPenetrationDepthStepEPA(inAIncludingConvexRadius, inBIncludingConvexRadius, inPenetrationTolerance, ioV, outPointA, outPointB);
}
JPH_ASSERT(false);
return false;
}
/// Test if a cast shape inA moving from inStart to lambda * inStart.GetTranslation() + inDirection where lambda e [0, ioLambda> intersects inB
///
/// @param inStart Start position and orientation of the convex object
/// @param inDirection Direction of the sweep (ioLambda * inDirection determines length)
/// @param inCollisionTolerance The minimal distance between A and B before they are considered colliding
/// @param inPenetrationTolerance A factor that determines the accuracy of the result. If the change of the squared distance is less than inTolerance * current_penetration_depth^2 the algorithm will terminate. Should be bigger or equal to FLT_EPSILON.
/// @param inA The convex object A, must support the GetSupport(Vec3) function.
/// @param inB The convex object B, must support the GetSupport(Vec3) function.
/// @param inConvexRadiusA The convex radius of A, this will be added on all sides to pad A.
/// @param inConvexRadiusB The convex radius of B, this will be added on all sides to pad B.
/// @param inReturnDeepestPoint If the shapes are initially intersecting this determines if the EPA algorithm will run to find the deepest point
/// @param ioLambda The max fraction along the sweep, on output updated with the actual collision fraction.
/// @param outPointA is the contact point on A
/// @param outPointB is the contact point on B
/// @param outContactNormal is either the contact normal when the objects are touching or the penetration axis when the objects are penetrating at the start of the sweep (pointing from A to B, length will not be 1)
///
/// @return true if the a hit was found, in which case ioLambda, outPointA, outPointB and outSurfaceNormal are updated.
template <typename A, typename B>
bool CastShape(Mat44Arg inStart, Vec3Arg inDirection, float inCollisionTolerance, float inPenetrationTolerance, const A &inA, const B &inB, float inConvexRadiusA, float inConvexRadiusB, bool inReturnDeepestPoint, float &ioLambda, Vec3 &outPointA, Vec3 &outPointB, Vec3 &outContactNormal)
{
JPH_IF_ENABLE_ASSERTS(mGJKTolerance = inCollisionTolerance;)
// First determine if there's a collision at all
if (!mGJK.CastShape(inStart, inDirection, inCollisionTolerance, inA, inB, inConvexRadiusA, inConvexRadiusB, ioLambda, outPointA, outPointB, outContactNormal))
return false;
// When our contact normal is too small, we don't have an accurate result
bool contact_normal_invalid = outContactNormal.IsNearZero(Square(inCollisionTolerance));
if (inReturnDeepestPoint
&& ioLambda == 0.0f // Only when lambda = 0 we can have the bodies overlap
&& (inConvexRadiusA + inConvexRadiusB == 0.0f // When no convex radius was provided we can never trust contact points at lambda = 0
|| contact_normal_invalid))
{
// If we're initially intersecting, we need to run the EPA algorithm in order to find the deepest contact point
AddConvexRadius add_convex_a(inA, inConvexRadiusA);
AddConvexRadius add_convex_b(inB, inConvexRadiusB);
TransformedConvexObject transformed_a(inStart, add_convex_a);
if (!GetPenetrationDepthStepEPA(transformed_a, add_convex_b, inPenetrationTolerance, outContactNormal, outPointA, outPointB))
return false;
}
else if (contact_normal_invalid)
{
// If we weren't able to calculate a contact normal, use the cast direction instead
outContactNormal = inDirection;
}
return true;
}
};
JPH_NAMESPACE_END

View File

@@ -0,0 +1,77 @@
// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#pragma once
#include <Jolt/Math/Float2.h>
JPH_NAMESPACE_BEGIN
/// Ellipse centered around the origin
/// @see https://en.wikipedia.org/wiki/Ellipse
class Ellipse
{
public:
JPH_OVERRIDE_NEW_DELETE
/// Construct ellipse with radius A along the X-axis and B along the Y-axis
Ellipse(float inA, float inB) : mA(inA), mB(inB) { JPH_ASSERT(inA > 0.0f); JPH_ASSERT(inB > 0.0f); }
/// Check if inPoint is inside the ellipse
bool IsInside(const Float2 &inPoint) const
{
return Square(inPoint.x / mA) + Square(inPoint.y / mB) <= 1.0f;
}
/// Get the closest point on the ellipse to inPoint
/// Assumes inPoint is outside the ellipse
/// @see Rotation Joint Limits in Quaternion Space by Gino van den Bergen, section 10.1 in Game Engine Gems 3.
Float2 GetClosestPoint(const Float2 &inPoint) const
{
float a_sq = Square(mA);
float b_sq = Square(mB);
// Equation of ellipse: f(x, y) = (x/a)^2 + (y/b)^2 - 1 = 0 [1]
// Normal on surface: (df/dx, df/dy) = (2 x / a^2, 2 y / b^2)
// Closest point (x', y') on ellipse to point (x, y): (x', y') + t (x / a^2, y / b^2) = (x, y)
// <=> (x', y') = (a^2 x / (t + a^2), b^2 y / (t + b^2))
// Requiring point to be on ellipse (substituting into [1]): g(t) = (a x / (t + a^2))^2 + (b y / (t + b^2))^2 - 1 = 0
// Newton Raphson iteration, starting at t = 0
float t = 0.0f;
for (;;)
{
// Calculate g(t)
float t_plus_a_sq = t + a_sq;
float t_plus_b_sq = t + b_sq;
float gt = Square(mA * inPoint.x / t_plus_a_sq) + Square(mB * inPoint.y / t_plus_b_sq) - 1.0f;
// Check if g(t) it is close enough to zero
if (abs(gt) < 1.0e-6f)
return Float2(a_sq * inPoint.x / t_plus_a_sq, b_sq * inPoint.y / t_plus_b_sq);
// Get derivative dg/dt = g'(t) = -2 (b^2 y^2 / (t + b^2)^3 + a^2 x^2 / (t + a^2)^3)
float gt_accent = -2.0f *
(a_sq * Square(inPoint.x) / Cubed(t_plus_a_sq)
+ b_sq * Square(inPoint.y) / Cubed(t_plus_b_sq));
// Calculate t for next iteration: tn+1 = tn - g(t) / g'(t)
float tn = t - gt / gt_accent;
t = tn;
}
}
/// Get normal at point inPoint (non-normalized vector)
Float2 GetNormal(const Float2 &inPoint) const
{
// Calculated by [d/dx f(x, y), d/dy f(x, y)], where f(x, y) is the ellipse equation from above
return Float2(inPoint.x / Square(mA), inPoint.y / Square(mB));
}
private:
float mA; ///< Radius along X-axis
float mB; ///< Radius along Y-axis
};
JPH_NAMESPACE_END

View File

@@ -0,0 +1,945 @@
// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#pragma once
#include <Jolt/Core/NonCopyable.h>
#include <Jolt/Geometry/ClosestPoint.h>
#include <Jolt/Geometry/ConvexSupport.h>
//#define JPH_GJK_DEBUG
#ifdef JPH_GJK_DEBUG
#include <Jolt/Core/StringTools.h>
#include <Jolt/Renderer/DebugRenderer.h>
#endif
JPH_NAMESPACE_BEGIN
/// Convex vs convex collision detection
/// Based on: A Fast and Robust GJK Implementation for Collision Detection of Convex Objects - Gino van den Bergen
class GJKClosestPoint : public NonCopyable
{
private:
/// Get new closest point to origin given simplex mY of mNumPoints points
///
/// @param inPrevVLenSq Length of |outV|^2 from the previous iteration, used as a maximum value when selecting a new closest point.
/// @param outV Closest point
/// @param outVLenSq |outV|^2
/// @param outSet Set of points that form the new simplex closest to the origin (bit 1 = mY[0], bit 2 = mY[1], ...)
///
/// If LastPointPartOfClosestFeature is true then the last point added will be assumed to be part of the closest feature and the function will do less work.
///
/// @return True if new closest point was found.
/// False if the function failed, in this case the output variables are not modified
template <bool LastPointPartOfClosestFeature>
bool GetClosest(float inPrevVLenSq, Vec3 &outV, float &outVLenSq, uint32 &outSet) const
{
#ifdef JPH_GJK_DEBUG
for (int i = 0; i < mNumPoints; ++i)
Trace("y[%d] = [%s], |y[%d]| = %g", i, ConvertToString(mY[i]).c_str(), i, (double)mY[i].Length());
#endif
uint32 set;
Vec3 v;
switch (mNumPoints)
{
case 1:
// Single point
set = 0b0001;
v = mY[0];
break;
case 2:
// Line segment
v = ClosestPoint::GetClosestPointOnLine(mY[0], mY[1], set);
break;
case 3:
// Triangle
v = ClosestPoint::GetClosestPointOnTriangle<LastPointPartOfClosestFeature>(mY[0], mY[1], mY[2], set);
break;
case 4:
// Tetrahedron
v = ClosestPoint::GetClosestPointOnTetrahedron<LastPointPartOfClosestFeature>(mY[0], mY[1], mY[2], mY[3], set);
break;
default:
JPH_ASSERT(false);
return false;
}
#ifdef JPH_GJK_DEBUG
Trace("GetClosest: set = 0b%s, v = [%s], |v| = %g", NibbleToBinary(set), ConvertToString(v).c_str(), (double)v.Length());
#endif
float v_len_sq = v.LengthSq();
if (v_len_sq < inPrevVLenSq) // Note, comparison order important: If v_len_sq is NaN then this expression will be false so we will return false
{
// Return closest point
outV = v;
outVLenSq = v_len_sq;
outSet = set;
return true;
}
// No better match found
#ifdef JPH_GJK_DEBUG
Trace("New closer point is further away, failed to converge");
#endif
return false;
}
// Get max(|Y_0|^2 .. |Y_n|^2)
float GetMaxYLengthSq() const
{
float y_len_sq = mY[0].LengthSq();
for (int i = 1; i < mNumPoints; ++i)
y_len_sq = max(y_len_sq, mY[i].LengthSq());
return y_len_sq;
}
// Remove points that are not in the set, only updates mY
void UpdatePointSetY(uint32 inSet)
{
int num_points = 0;
for (int i = 0; i < mNumPoints; ++i)
if ((inSet & (1 << i)) != 0)
{
mY[num_points] = mY[i];
++num_points;
}
mNumPoints = num_points;
}
// Remove points that are not in the set, only updates mP
void UpdatePointSetP(uint32 inSet)
{
int num_points = 0;
for (int i = 0; i < mNumPoints; ++i)
if ((inSet & (1 << i)) != 0)
{
mP[num_points] = mP[i];
++num_points;
}
mNumPoints = num_points;
}
// Remove points that are not in the set, only updates mP and mQ
void UpdatePointSetPQ(uint32 inSet)
{
int num_points = 0;
for (int i = 0; i < mNumPoints; ++i)
if ((inSet & (1 << i)) != 0)
{
mP[num_points] = mP[i];
mQ[num_points] = mQ[i];
++num_points;
}
mNumPoints = num_points;
}
// Remove points that are not in the set, updates mY, mP and mQ
void UpdatePointSetYPQ(uint32 inSet)
{
int num_points = 0;
for (int i = 0; i < mNumPoints; ++i)
if ((inSet & (1 << i)) != 0)
{
mY[num_points] = mY[i];
mP[num_points] = mP[i];
mQ[num_points] = mQ[i];
++num_points;
}
mNumPoints = num_points;
}
// Calculate closest points on A and B
void CalculatePointAAndB(Vec3 &outPointA, Vec3 &outPointB) const
{
switch (mNumPoints)
{
case 1:
outPointA = mP[0];
outPointB = mQ[0];
break;
case 2:
{
float u, v;
ClosestPoint::GetBaryCentricCoordinates(mY[0], mY[1], u, v);
outPointA = u * mP[0] + v * mP[1];
outPointB = u * mQ[0] + v * mQ[1];
}
break;
case 3:
{
float u, v, w;
ClosestPoint::GetBaryCentricCoordinates(mY[0], mY[1], mY[2], u, v, w);
outPointA = u * mP[0] + v * mP[1] + w * mP[2];
outPointB = u * mQ[0] + v * mQ[1] + w * mQ[2];
}
break;
case 4:
#ifdef JPH_DEBUG
memset(&outPointA, 0xcd, sizeof(outPointA));
memset(&outPointB, 0xcd, sizeof(outPointB));
#endif
break;
}
}
public:
/// Test if inA and inB intersect
///
/// @param inA The convex object A, must support the GetSupport(Vec3) function.
/// @param inB The convex object B, must support the GetSupport(Vec3) function.
/// @param inTolerance Minimal distance between objects when the objects are considered to be colliding
/// @param ioV is used as initial separating axis (provide a zero vector if you don't know yet)
///
/// @return True if they intersect (in which case ioV = (0, 0, 0)).
/// False if they don't intersect in which case ioV is a separating axis in the direction from A to B (magnitude is meaningless)
template <typename A, typename B>
bool Intersects(const A &inA, const B &inB, float inTolerance, Vec3 &ioV)
{
float tolerance_sq = Square(inTolerance);
// Reset state
mNumPoints = 0;
#ifdef JPH_GJK_DEBUG
for (int i = 0; i < 4; ++i)
mY[i] = Vec3::sZero();
#endif
// Previous length^2 of v
float prev_v_len_sq = FLT_MAX;
for (;;)
{
#ifdef JPH_GJK_DEBUG
Trace("v = [%s], num_points = %d", ConvertToString(ioV).c_str(), mNumPoints);
#endif
// Get support points for shape A and B in the direction of v
Vec3 p = inA.GetSupport(ioV);
Vec3 q = inB.GetSupport(-ioV);
// Get support point of the minkowski sum A - B of v
Vec3 w = p - q;
// If the support point sA-B(v) is in the opposite direction as v, then we have found a separating axis and there is no intersection
if (ioV.Dot(w) < 0.0f)
{
// Separating axis found
#ifdef JPH_GJK_DEBUG
Trace("Separating axis");
#endif
return false;
}
// Store the point for later use
mY[mNumPoints] = w;
++mNumPoints;
#ifdef JPH_GJK_DEBUG
Trace("w = [%s]", ConvertToString(w).c_str());
#endif
// Determine the new closest point
float v_len_sq; // Length^2 of v
uint32 set; // Set of points that form the new simplex
if (!GetClosest<true>(prev_v_len_sq, ioV, v_len_sq, set))
return false;
// If there are 4 points, the origin is inside the tetrahedron and we're done
if (set == 0xf)
{
#ifdef JPH_GJK_DEBUG
Trace("Full simplex");
#endif
ioV = Vec3::sZero();
return true;
}
// If v is very close to zero, we consider this a collision
if (v_len_sq <= tolerance_sq)
{
#ifdef JPH_GJK_DEBUG
Trace("Distance zero");
#endif
ioV = Vec3::sZero();
return true;
}
// If v is very small compared to the length of y, we also consider this a collision
if (v_len_sq <= FLT_EPSILON * GetMaxYLengthSq())
{
#ifdef JPH_GJK_DEBUG
Trace("Machine precision reached");
#endif
ioV = Vec3::sZero();
return true;
}
// The next separation axis to test is the negative of the closest point of the Minkowski sum to the origin
// Note: This must be done before terminating as converged since the separating axis is -v
ioV = -ioV;
// If the squared length of v is not changing enough, we've converged and there is no collision
JPH_ASSERT(prev_v_len_sq >= v_len_sq);
if (prev_v_len_sq - v_len_sq <= FLT_EPSILON * prev_v_len_sq)
{
// v is a separating axis
#ifdef JPH_GJK_DEBUG
Trace("Converged");
#endif
return false;
}
prev_v_len_sq = v_len_sq;
// Update the points of the simplex
UpdatePointSetY(set);
}
}
/// Get closest points between inA and inB
///
/// @param inA The convex object A, must support the GetSupport(Vec3) function.
/// @param inB The convex object B, must support the GetSupport(Vec3) function.
/// @param inTolerance The minimal distance between A and B before the objects are considered colliding and processing is terminated.
/// @param inMaxDistSq The maximum squared distance between A and B before the objects are considered infinitely far away and processing is terminated.
/// @param ioV Initial guess for the separating axis. Start with any non-zero vector if you don't know.
/// If return value is 0, ioV = (0, 0, 0).
/// If the return value is bigger than 0 but smaller than FLT_MAX, ioV will be the separating axis in the direction from A to B and its length the squared distance between A and B.
/// If the return value is FLT_MAX, ioV will be the separating axis in the direction from A to B and the magnitude of the vector is meaningless.
/// @param outPointA , outPointB
/// If the return value is 0 the points are invalid.
/// If the return value is bigger than 0 but smaller than FLT_MAX these will contain the closest point on A and B.
/// If the return value is FLT_MAX the points are invalid.
///
/// @return The squared distance between A and B or FLT_MAX when they are further away than inMaxDistSq.
template <typename A, typename B>
float GetClosestPoints(const A &inA, const B &inB, float inTolerance, float inMaxDistSq, Vec3 &ioV, Vec3 &outPointA, Vec3 &outPointB)
{
float tolerance_sq = Square(inTolerance);
// Reset state
mNumPoints = 0;
#ifdef JPH_GJK_DEBUG
// Generate the hull of the Minkowski difference for visualization
MinkowskiDifference diff(inA, inB);
mGeometry = DebugRenderer::sInstance->CreateTriangleGeometryForConvex([&diff](Vec3Arg inDirection) { return diff.GetSupport(inDirection); });
for (int i = 0; i < 4; ++i)
{
mY[i] = Vec3::sZero();
mP[i] = Vec3::sZero();
mQ[i] = Vec3::sZero();
}
#endif
// Length^2 of v
float v_len_sq = ioV.LengthSq();
// Previous length^2 of v
float prev_v_len_sq = FLT_MAX;
for (;;)
{
#ifdef JPH_GJK_DEBUG
Trace("v = [%s], num_points = %d", ConvertToString(ioV).c_str(), mNumPoints);
#endif
// Get support points for shape A and B in the direction of v
Vec3 p = inA.GetSupport(ioV);
Vec3 q = inB.GetSupport(-ioV);
// Get support point of the minkowski sum A - B of v
Vec3 w = p - q;
float dot = ioV.Dot(w);
#ifdef JPH_GJK_DEBUG
// Draw -ioV to show the closest point to the origin from the previous simplex
DebugRenderer::sInstance->DrawArrow(mOffset, mOffset - ioV, Color::sOrange, 0.05f);
// Draw ioV to show where we're probing next
DebugRenderer::sInstance->DrawArrow(mOffset, mOffset + ioV, Color::sCyan, 0.05f);
// Draw w, the support point
DebugRenderer::sInstance->DrawArrow(mOffset, mOffset + w, Color::sGreen, 0.05f);
DebugRenderer::sInstance->DrawMarker(mOffset + w, Color::sGreen, 1.0f);
// Draw the simplex and the Minkowski difference around it
DrawState();
#endif
// Test if we have a separation of more than inMaxDistSq, in which case we terminate early
if (dot < 0.0f && dot * dot > v_len_sq * inMaxDistSq)
{
#ifdef JPH_GJK_DEBUG
Trace("Distance bigger than max");
#endif
#ifdef JPH_DEBUG
memset(&outPointA, 0xcd, sizeof(outPointA));
memset(&outPointB, 0xcd, sizeof(outPointB));
#endif
return FLT_MAX;
}
// Store the point for later use
mY[mNumPoints] = w;
mP[mNumPoints] = p;
mQ[mNumPoints] = q;
++mNumPoints;
#ifdef JPH_GJK_DEBUG
Trace("w = [%s]", ConvertToString(w).c_str());
#endif
uint32 set;
if (!GetClosest<true>(prev_v_len_sq, ioV, v_len_sq, set))
{
--mNumPoints; // Undo add last point
break;
}
// If there are 4 points, the origin is inside the tetrahedron and we're done
if (set == 0xf)
{
#ifdef JPH_GJK_DEBUG
Trace("Full simplex");
#endif
ioV = Vec3::sZero();
v_len_sq = 0.0f;
break;
}
// Update the points of the simplex
UpdatePointSetYPQ(set);
// If v is very close to zero, we consider this a collision
if (v_len_sq <= tolerance_sq)
{
#ifdef JPH_GJK_DEBUG
Trace("Distance zero");
#endif
ioV = Vec3::sZero();
v_len_sq = 0.0f;
break;
}
// If v is very small compared to the length of y, we also consider this a collision
#ifdef JPH_GJK_DEBUG
Trace("Check v small compared to y: %g <= %g", (double)v_len_sq, (double)(FLT_EPSILON * GetMaxYLengthSq()));
#endif
if (v_len_sq <= FLT_EPSILON * GetMaxYLengthSq())
{
#ifdef JPH_GJK_DEBUG
Trace("Machine precision reached");
#endif
ioV = Vec3::sZero();
v_len_sq = 0.0f;
break;
}
// The next separation axis to test is the negative of the closest point of the Minkowski sum to the origin
// Note: This must be done before terminating as converged since the separating axis is -v
ioV = -ioV;
// If the squared length of v is not changing enough, we've converged and there is no collision
#ifdef JPH_GJK_DEBUG
Trace("Check v not changing enough: %g <= %g", (double)(prev_v_len_sq - v_len_sq), (double)(FLT_EPSILON * prev_v_len_sq));
#endif
JPH_ASSERT(prev_v_len_sq >= v_len_sq);
if (prev_v_len_sq - v_len_sq <= FLT_EPSILON * prev_v_len_sq)
{
// v is a separating axis
#ifdef JPH_GJK_DEBUG
Trace("Converged");
#endif
break;
}
prev_v_len_sq = v_len_sq;
}
// Get the closest points
CalculatePointAAndB(outPointA, outPointB);
#ifdef JPH_GJK_DEBUG
Trace("Return: v = [%s], |v| = %g", ConvertToString(ioV).c_str(), (double)ioV.Length());
// Draw -ioV to show the closest point to the origin from the previous simplex
DebugRenderer::sInstance->DrawArrow(mOffset, mOffset - ioV, Color::sOrange, 0.05f);
// Draw the closest points
DebugRenderer::sInstance->DrawMarker(mOffset + outPointA, Color::sGreen, 1.0f);
DebugRenderer::sInstance->DrawMarker(mOffset + outPointB, Color::sPurple, 1.0f);
// Draw the simplex and the Minkowski difference around it
DrawState();
#endif
JPH_ASSERT(ioV.LengthSq() == v_len_sq);
return v_len_sq;
}
/// Get the resulting simplex after the GetClosestPoints algorithm finishes.
/// If it returned a squared distance of 0, the origin will be contained in the simplex.
void GetClosestPointsSimplex(Vec3 *outY, Vec3 *outP, Vec3 *outQ, uint &outNumPoints) const
{
uint size = sizeof(Vec3) * mNumPoints;
memcpy(outY, mY, size);
memcpy(outP, mP, size);
memcpy(outQ, mQ, size);
outNumPoints = mNumPoints;
}
/// Test if a ray inRayOrigin + lambda * inRayDirection for lambda e [0, ioLambda> intersects inA
///
/// Code based upon: Ray Casting against General Convex Objects with Application to Continuous Collision Detection - Gino van den Bergen
///
/// @param inRayOrigin Origin of the ray
/// @param inRayDirection Direction of the ray (ioLambda * inDirection determines length)
/// @param inTolerance The minimal distance between the ray and A before it is considered colliding
/// @param inA A convex object that has the GetSupport(Vec3) function
/// @param ioLambda The max fraction along the ray, on output updated with the actual collision fraction.
///
/// @return true if a hit was found, ioLambda is the solution for lambda.
template <typename A>
bool CastRay(Vec3Arg inRayOrigin, Vec3Arg inRayDirection, float inTolerance, const A &inA, float &ioLambda)
{
float tolerance_sq = Square(inTolerance);
// Reset state
mNumPoints = 0;
float lambda = 0.0f;
Vec3 x = inRayOrigin;
Vec3 v = x - inA.GetSupport(Vec3::sZero());
float v_len_sq = FLT_MAX;
bool allow_restart = false;
for (;;)
{
#ifdef JPH_GJK_DEBUG
Trace("v = [%s], num_points = %d", ConvertToString(v).c_str(), mNumPoints);
#endif
// Get new support point
Vec3 p = inA.GetSupport(v);
Vec3 w = x - p;
#ifdef JPH_GJK_DEBUG
Trace("w = [%s]", ConvertToString(w).c_str());
#endif
float v_dot_w = v.Dot(w);
#ifdef JPH_GJK_DEBUG
Trace("v . w = %g", (double)v_dot_w);
#endif
if (v_dot_w > 0.0f)
{
// If ray and normal are in the same direction, we've passed A and there's no collision
float v_dot_r = v.Dot(inRayDirection);
#ifdef JPH_GJK_DEBUG
Trace("v . r = %g", (double)v_dot_r);
#endif
if (v_dot_r >= 0.0f)
return false;
// Update the lower bound for lambda
float delta = v_dot_w / v_dot_r;
float old_lambda = lambda;
lambda -= delta;
#ifdef JPH_GJK_DEBUG
Trace("lambda = %g, delta = %g", (double)lambda, (double)delta);
#endif
// If lambda didn't change, we cannot converge any further and we assume a hit
if (old_lambda == lambda)
break;
// If lambda is bigger or equal than max, we don't have a hit
if (lambda >= ioLambda)
return false;
// Update x to new closest point on the ray
x = inRayOrigin + lambda * inRayDirection;
// We've shifted x, so reset v_len_sq so that it is not used as early out for GetClosest
v_len_sq = FLT_MAX;
// We allow rebuilding the simplex once after x changes because the simplex was built
// for another x and numerical round off builds up as you keep adding points to an
// existing simplex
allow_restart = true;
}
// Add p to set P: P = P U {p}
mP[mNumPoints] = p;
++mNumPoints;
// Calculate Y = {x} - P
for (int i = 0; i < mNumPoints; ++i)
mY[i] = x - mP[i];
// Determine the new closest point from Y to origin
uint32 set; // Set of points that form the new simplex
if (!GetClosest<false>(v_len_sq, v, v_len_sq, set))
{
#ifdef JPH_GJK_DEBUG
Trace("Failed to converge");
#endif
// Only allow 1 restart, if we still can't get a closest point
// we're so close that we return this as a hit
if (!allow_restart)
break;
// If we fail to converge, we start again with the last point as simplex
#ifdef JPH_GJK_DEBUG
Trace("Restarting");
#endif
allow_restart = false;
mP[0] = p;
mNumPoints = 1;
v = x - p;
v_len_sq = FLT_MAX;
continue;
}
else if (set == 0xf)
{
#ifdef JPH_GJK_DEBUG
Trace("Full simplex");
#endif
// We're inside the tetrahedron, we have a hit (verify that length of v is 0)
JPH_ASSERT(v_len_sq == 0.0f);
break;
}
// Update the points P to form the new simplex
// Note: We're not updating Y as Y will shift with x so we have to calculate it every iteration
UpdatePointSetP(set);
// Check if x is close enough to inA
if (v_len_sq <= tolerance_sq)
{
#ifdef JPH_GJK_DEBUG
Trace("Converged");
#endif
break;
}
}
// Store hit fraction
ioLambda = lambda;
return true;
}
/// Test if a cast shape inA moving from inStart to lambda * inStart.GetTranslation() + inDirection where lambda e [0, ioLambda> intersects inB
///
/// @param inStart Start position and orientation of the convex object
/// @param inDirection Direction of the sweep (ioLambda * inDirection determines length)
/// @param inTolerance The minimal distance between A and B before they are considered colliding
/// @param inA The convex object A, must support the GetSupport(Vec3) function.
/// @param inB The convex object B, must support the GetSupport(Vec3) function.
/// @param ioLambda The max fraction along the sweep, on output updated with the actual collision fraction.
///
/// @return true if a hit was found, ioLambda is the solution for lambda.
template <typename A, typename B>
bool CastShape(Mat44Arg inStart, Vec3Arg inDirection, float inTolerance, const A &inA, const B &inB, float &ioLambda)
{
// Transform the shape to be cast to the starting position
TransformedConvexObject transformed_a(inStart, inA);
// Calculate the minkowski difference inB - inA
// inA is moving, so we need to add the back side of inB to the front side of inA
MinkowskiDifference difference(inB, transformed_a);
// Do a raycast against the Minkowski difference
return CastRay(Vec3::sZero(), inDirection, inTolerance, difference, ioLambda);
}
/// Test if a cast shape inA moving from inStart to lambda * inStart.GetTranslation() + inDirection where lambda e [0, ioLambda> intersects inB
///
/// @param inStart Start position and orientation of the convex object
/// @param inDirection Direction of the sweep (ioLambda * inDirection determines length)
/// @param inTolerance The minimal distance between A and B before they are considered colliding
/// @param inA The convex object A, must support the GetSupport(Vec3) function.
/// @param inB The convex object B, must support the GetSupport(Vec3) function.
/// @param inConvexRadiusA The convex radius of A, this will be added on all sides to pad A.
/// @param inConvexRadiusB The convex radius of B, this will be added on all sides to pad B.
/// @param ioLambda The max fraction along the sweep, on output updated with the actual collision fraction.
/// @param outPointA is the contact point on A (if outSeparatingAxis is near zero, this may not be not the deepest point)
/// @param outPointB is the contact point on B (if outSeparatingAxis is near zero, this may not be not the deepest point)
/// @param outSeparatingAxis On return this will contain a vector that points from A to B along the smallest distance of separation.
/// The length of this vector indicates the separation of A and B without their convex radius.
/// If it is near zero, the direction may not be accurate as the bodies may overlap when lambda = 0.
///
/// @return true if a hit was found, ioLambda is the solution for lambda and outPoint and outSeparatingAxis are valid.
template <typename A, typename B>
bool CastShape(Mat44Arg inStart, Vec3Arg inDirection, float inTolerance, const A &inA, const B &inB, float inConvexRadiusA, float inConvexRadiusB, float &ioLambda, Vec3 &outPointA, Vec3 &outPointB, Vec3 &outSeparatingAxis)
{
float tolerance_sq = Square(inTolerance);
// Calculate how close A and B (without their convex radius) need to be to each other in order for us to consider this a collision
float sum_convex_radius = inConvexRadiusA + inConvexRadiusB;
// Transform the shape to be cast to the starting position
TransformedConvexObject transformed_a(inStart, inA);
// Reset state
mNumPoints = 0;
float lambda = 0.0f;
Vec3 x = Vec3::sZero(); // Since A is already transformed we can start the cast from zero
Vec3 v = -inB.GetSupport(Vec3::sZero()) + transformed_a.GetSupport(Vec3::sZero()); // See CastRay: v = x - inA.GetSupport(Vec3::sZero()) where inA is the Minkowski difference inB - transformed_a (see CastShape above) and x is zero
float v_len_sq = FLT_MAX;
bool allow_restart = false;
// Keeps track of separating axis of the previous iteration.
// Initialized at zero as we don't know if our first v is actually a separating axis.
Vec3 prev_v = Vec3::sZero();
for (;;)
{
#ifdef JPH_GJK_DEBUG
Trace("v = [%s], num_points = %d", ConvertToString(v).c_str(), mNumPoints);
#endif
// Calculate the minkowski difference inB - inA
// inA is moving, so we need to add the back side of inB to the front side of inA
// Keep the support points on A and B separate so that in the end we can calculate a contact point
Vec3 p = transformed_a.GetSupport(-v);
Vec3 q = inB.GetSupport(v);
Vec3 w = x - (q - p);
#ifdef JPH_GJK_DEBUG
Trace("w = [%s]", ConvertToString(w).c_str());
#endif
// Difference from article to this code:
// We did not include the convex radius in p and q in order to be able to calculate a good separating axis at the end of the algorithm.
// However when moving forward along inDirection we do need to take this into account so that we keep A and B separated by the sum of their convex radii.
// From p we have to subtract: inConvexRadiusA * v / |v|
// To q we have to add: inConvexRadiusB * v / |v|
// This means that to w we have to add: -(inConvexRadiusA + inConvexRadiusB) * v / |v|
// So to v . w we have to add: v . (-(inConvexRadiusA + inConvexRadiusB) * v / |v|) = -(inConvexRadiusA + inConvexRadiusB) * |v|
float v_dot_w = v.Dot(w) - sum_convex_radius * v.Length();
#ifdef JPH_GJK_DEBUG
Trace("v . w = %g", (double)v_dot_w);
#endif
if (v_dot_w > 0.0f)
{
// If ray and normal are in the same direction, we've passed A and there's no collision
float v_dot_r = v.Dot(inDirection);
#ifdef JPH_GJK_DEBUG
Trace("v . r = %g", (double)v_dot_r);
#endif
if (v_dot_r >= 0.0f)
return false;
// Update the lower bound for lambda
float delta = v_dot_w / v_dot_r;
float old_lambda = lambda;
lambda -= delta;
#ifdef JPH_GJK_DEBUG
Trace("lambda = %g, delta = %g", (double)lambda, (double)delta);
#endif
// If lambda didn't change, we cannot converge any further and we assume a hit
if (old_lambda == lambda)
break;
// If lambda is bigger or equal than max, we don't have a hit
if (lambda >= ioLambda)
return false;
// Update x to new closest point on the ray
x = lambda * inDirection;
// We've shifted x, so reset v_len_sq so that it is not used as early out when GetClosest returns false
v_len_sq = FLT_MAX;
// Now that we've moved, we know that A and B are not intersecting at lambda = 0, so we can update our tolerance to stop iterating
// as soon as A and B are inConvexRadiusA + inConvexRadiusB apart
tolerance_sq = Square(inTolerance + sum_convex_radius);
// We allow rebuilding the simplex once after x changes because the simplex was built
// for another x and numerical round off builds up as you keep adding points to an
// existing simplex
allow_restart = true;
}
// Add p to set P, q to set Q: P = P U {p}, Q = Q U {q}
mP[mNumPoints] = p;
mQ[mNumPoints] = q;
++mNumPoints;
// Calculate Y = {x} - (Q - P)
for (int i = 0; i < mNumPoints; ++i)
mY[i] = x - (mQ[i] - mP[i]);
// Determine the new closest point from Y to origin
uint32 set; // Set of points that form the new simplex
if (!GetClosest<false>(v_len_sq, v, v_len_sq, set))
{
#ifdef JPH_GJK_DEBUG
Trace("Failed to converge");
#endif
// Only allow 1 restart, if we still can't get a closest point
// we're so close that we return this as a hit
if (!allow_restart)
break;
// If we fail to converge, we start again with the last point as simplex
#ifdef JPH_GJK_DEBUG
Trace("Restarting");
#endif
allow_restart = false;
mP[0] = p;
mQ[0] = q;
mNumPoints = 1;
v = x - q;
v_len_sq = FLT_MAX;
continue;
}
else if (set == 0xf)
{
#ifdef JPH_GJK_DEBUG
Trace("Full simplex");
#endif
// We're inside the tetrahedron, we have a hit (verify that length of v is 0)
JPH_ASSERT(v_len_sq == 0.0f);
break;
}
// Update the points P and Q to form the new simplex
// Note: We're not updating Y as Y will shift with x so we have to calculate it every iteration
UpdatePointSetPQ(set);
// Check if A and B are touching according to our tolerance
if (v_len_sq <= tolerance_sq)
{
#ifdef JPH_GJK_DEBUG
Trace("Converged");
#endif
break;
}
// Store our v to return as separating axis
prev_v = v;
}
// Calculate Y = {x} - (Q - P) again so we can calculate the contact points
for (int i = 0; i < mNumPoints; ++i)
mY[i] = x - (mQ[i] - mP[i]);
// Calculate the offset we need to apply to A and B to correct for the convex radius
Vec3 normalized_v = v.NormalizedOr(Vec3::sZero());
Vec3 convex_radius_a = inConvexRadiusA * normalized_v;
Vec3 convex_radius_b = inConvexRadiusB * normalized_v;
// Get the contact point
// Note that A and B will coincide when lambda > 0. In this case we calculate only B as it is more accurate as it contains less terms.
switch (mNumPoints)
{
case 1:
outPointB = mQ[0] + convex_radius_b;
outPointA = lambda > 0.0f? outPointB : mP[0] - convex_radius_a;
break;
case 2:
{
float bu, bv;
ClosestPoint::GetBaryCentricCoordinates(mY[0], mY[1], bu, bv);
outPointB = bu * mQ[0] + bv * mQ[1] + convex_radius_b;
outPointA = lambda > 0.0f? outPointB : bu * mP[0] + bv * mP[1] - convex_radius_a;
}
break;
case 3:
case 4: // A full simplex, we can't properly determine a contact point! As contact point we take the closest point of the previous iteration.
{
float bu, bv, bw;
ClosestPoint::GetBaryCentricCoordinates(mY[0], mY[1], mY[2], bu, bv, bw);
outPointB = bu * mQ[0] + bv * mQ[1] + bw * mQ[2] + convex_radius_b;
outPointA = lambda > 0.0f? outPointB : bu * mP[0] + bv * mP[1] + bw * mP[2] - convex_radius_a;
}
break;
}
// Store separating axis, in case we have a convex radius we can just return v,
// otherwise v will be very small and we resort to returning previous v as an approximation.
outSeparatingAxis = sum_convex_radius > 0.0f? -v : -prev_v;
// Store hit fraction
ioLambda = lambda;
return true;
}
private:
#ifdef JPH_GJK_DEBUG
/// Draw state of algorithm
void DrawState()
{
RMat44 origin = RMat44::sTranslation(mOffset);
// Draw origin
DebugRenderer::sInstance->DrawCoordinateSystem(origin, 1.0f);
// Draw the hull
DebugRenderer::sInstance->DrawGeometry(origin, mGeometry->mBounds.Transformed(origin), mGeometry->mBounds.GetExtent().LengthSq(), Color::sYellow, mGeometry);
// Draw Y
for (int i = 0; i < mNumPoints; ++i)
{
// Draw support point
RVec3 y_i = origin * mY[i];
DebugRenderer::sInstance->DrawMarker(y_i, Color::sRed, 1.0f);
for (int j = i + 1; j < mNumPoints; ++j)
{
// Draw edge
RVec3 y_j = origin * mY[j];
DebugRenderer::sInstance->DrawLine(y_i, y_j, Color::sRed);
for (int k = j + 1; k < mNumPoints; ++k)
{
// Make sure triangle faces the origin
RVec3 y_k = origin * mY[k];
RVec3 center = (y_i + y_j + y_k) / Real(3);
RVec3 normal = (y_j - y_i).Cross(y_k - y_i);
if (normal.Dot(center) < Real(0))
DebugRenderer::sInstance->DrawTriangle(y_i, y_j, y_k, Color::sLightGrey);
else
DebugRenderer::sInstance->DrawTriangle(y_i, y_k, y_j, Color::sLightGrey);
}
}
}
// Offset to the right
mOffset += Vec3(mGeometry->mBounds.GetSize().GetX() + 2.0f, 0, 0);
}
#endif // JPH_GJK_DEBUG
Vec3 mY[4]; ///< Support points on A - B
Vec3 mP[4]; ///< Support point on A
Vec3 mQ[4]; ///< Support point on B
int mNumPoints = 0; ///< Number of points in mY, mP and mQ that are valid
#ifdef JPH_GJK_DEBUG
DebugRenderer::GeometryRef mGeometry; ///< A visualization of the minkowski difference for state drawing
RVec3 mOffset = RVec3::sZero(); ///< Offset to use for state drawing
#endif
};
JPH_NAMESPACE_END

View File

@@ -0,0 +1,130 @@
// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#pragma once
#include <Jolt/Core/HashCombine.h>
JPH_NAMESPACE_BEGIN
/// Triangle with 32-bit indices
class IndexedTriangleNoMaterial
{
public:
JPH_OVERRIDE_NEW_DELETE
/// Constructor
IndexedTriangleNoMaterial() = default;
constexpr IndexedTriangleNoMaterial(uint32 inI1, uint32 inI2, uint32 inI3) : mIdx { inI1, inI2, inI3 } { }
/// Check if two triangles are identical
bool operator == (const IndexedTriangleNoMaterial &inRHS) const
{
return mIdx[0] == inRHS.mIdx[0] && mIdx[1] == inRHS.mIdx[1] && mIdx[2] == inRHS.mIdx[2];
}
/// Check if two triangles are equivalent (using the same vertices)
bool IsEquivalent(const IndexedTriangleNoMaterial &inRHS) const
{
return (mIdx[0] == inRHS.mIdx[0] && mIdx[1] == inRHS.mIdx[1] && mIdx[2] == inRHS.mIdx[2])
|| (mIdx[0] == inRHS.mIdx[1] && mIdx[1] == inRHS.mIdx[2] && mIdx[2] == inRHS.mIdx[0])
|| (mIdx[0] == inRHS.mIdx[2] && mIdx[1] == inRHS.mIdx[0] && mIdx[2] == inRHS.mIdx[1]);
}
/// Check if two triangles are opposite (using the same vertices but in opposing order)
bool IsOpposite(const IndexedTriangleNoMaterial &inRHS) const
{
return (mIdx[0] == inRHS.mIdx[0] && mIdx[1] == inRHS.mIdx[2] && mIdx[2] == inRHS.mIdx[1])
|| (mIdx[0] == inRHS.mIdx[1] && mIdx[1] == inRHS.mIdx[0] && mIdx[2] == inRHS.mIdx[2])
|| (mIdx[0] == inRHS.mIdx[2] && mIdx[1] == inRHS.mIdx[1] && mIdx[2] == inRHS.mIdx[0]);
}
/// Check if triangle is degenerate
bool IsDegenerate(const VertexList &inVertices) const
{
Vec3 v0(inVertices[mIdx[0]]);
Vec3 v1(inVertices[mIdx[1]]);
Vec3 v2(inVertices[mIdx[2]]);
return (v1 - v0).Cross(v2 - v0).IsNearZero();
}
/// Rotate the vertices so that the second vertex becomes first etc. This does not change the represented triangle.
void Rotate()
{
uint32 tmp = mIdx[0];
mIdx[0] = mIdx[1];
mIdx[1] = mIdx[2];
mIdx[2] = tmp;
}
/// Get center of triangle
Vec3 GetCentroid(const VertexList &inVertices) const
{
return (Vec3(inVertices[mIdx[0]]) + Vec3(inVertices[mIdx[1]]) + Vec3(inVertices[mIdx[2]])) / 3.0f;
}
/// Get the hash value of this structure
uint64 GetHash() const
{
static_assert(sizeof(IndexedTriangleNoMaterial) == 3 * sizeof(uint32), "Class should have no padding");
return HashBytes(this, sizeof(IndexedTriangleNoMaterial));
}
uint32 mIdx[3];
};
/// Triangle with 32-bit indices and material index
class IndexedTriangle : public IndexedTriangleNoMaterial
{
public:
using IndexedTriangleNoMaterial::IndexedTriangleNoMaterial;
/// Constructor
constexpr IndexedTriangle(uint32 inI1, uint32 inI2, uint32 inI3, uint32 inMaterialIndex, uint inUserData = 0) : IndexedTriangleNoMaterial(inI1, inI2, inI3), mMaterialIndex(inMaterialIndex), mUserData(inUserData) { }
/// Check if two triangles are identical
bool operator == (const IndexedTriangle &inRHS) const
{
return mMaterialIndex == inRHS.mMaterialIndex && mUserData == inRHS.mUserData && IndexedTriangleNoMaterial::operator==(inRHS);
}
/// Rotate the vertices so that the lowest vertex becomes the first. This does not change the represented triangle.
IndexedTriangle GetLowestIndexFirst() const
{
if (mIdx[0] < mIdx[1])
{
if (mIdx[0] < mIdx[2])
return IndexedTriangle(mIdx[0], mIdx[1], mIdx[2], mMaterialIndex, mUserData); // 0 is smallest
else
return IndexedTriangle(mIdx[2], mIdx[0], mIdx[1], mMaterialIndex, mUserData); // 2 is smallest
}
else
{
if (mIdx[1] < mIdx[2])
return IndexedTriangle(mIdx[1], mIdx[2], mIdx[0], mMaterialIndex, mUserData); // 1 is smallest
else
return IndexedTriangle(mIdx[2], mIdx[0], mIdx[1], mMaterialIndex, mUserData); // 2 is smallest
}
}
/// Get the hash value of this structure
uint64 GetHash() const
{
static_assert(sizeof(IndexedTriangle) == 5 * sizeof(uint32), "Class should have no padding");
return HashBytes(this, sizeof(IndexedTriangle));
}
uint32 mMaterialIndex = 0;
uint32 mUserData = 0; ///< User data that can be used for anything by the application, e.g. for tracking the original index of the triangle
};
using IndexedTriangleNoMaterialList = Array<IndexedTriangleNoMaterial>;
using IndexedTriangleList = Array<IndexedTriangle>;
JPH_NAMESPACE_END
// Create a std::hash for IndexedTriangleNoMaterial and IndexedTriangle
JPH_MAKE_STD_HASH(JPH::IndexedTriangleNoMaterial)
JPH_MAKE_STD_HASH(JPH::IndexedTriangle)

View File

@@ -0,0 +1,222 @@
// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#include <Jolt/Jolt.h>
#include <Jolt/Geometry/Indexify.h>
#include <Jolt/Geometry/AABox.h>
JPH_NAMESPACE_BEGIN
static JPH_INLINE const Float3 &sIndexifyGetFloat3(const TriangleList &inTriangles, uint32 inVertexIndex)
{
return inTriangles[inVertexIndex / 3].mV[inVertexIndex % 3];
}
static JPH_INLINE Vec3 sIndexifyGetVec3(const TriangleList &inTriangles, uint32 inVertexIndex)
{
return Vec3::sLoadFloat3Unsafe(sIndexifyGetFloat3(inTriangles, inVertexIndex));
}
static void sIndexifyVerticesBruteForce(const TriangleList &inTriangles, const uint32 *inVertexIndices, const uint32 *inVertexIndicesEnd, Array<uint32> &ioWeldedVertices, float inVertexWeldDistance)
{
float weld_dist_sq = Square(inVertexWeldDistance);
// Compare every vertex
for (const uint32 *v1_idx = inVertexIndices; v1_idx < inVertexIndicesEnd; ++v1_idx)
{
Vec3 v1 = sIndexifyGetVec3(inTriangles, *v1_idx);
// with every other vertex...
for (const uint32 *v2_idx = v1_idx + 1; v2_idx < inVertexIndicesEnd; ++v2_idx)
{
Vec3 v2 = sIndexifyGetVec3(inTriangles, *v2_idx);
// If they're weldable
if ((v2 - v1).LengthSq() <= weld_dist_sq)
{
// Find the lowest indices both indices link to
uint32 idx1 = *v1_idx;
for (;;)
{
uint32 new_idx1 = ioWeldedVertices[idx1];
if (new_idx1 >= idx1)
break;
idx1 = new_idx1;
}
uint32 idx2 = *v2_idx;
for (;;)
{
uint32 new_idx2 = ioWeldedVertices[idx2];
if (new_idx2 >= idx2)
break;
idx2 = new_idx2;
}
// Order the vertices
uint32 lowest = min(idx1, idx2);
uint32 highest = max(idx1, idx2);
// Link highest to lowest
ioWeldedVertices[highest] = lowest;
// Also update the vertices we started from to avoid creating long chains
ioWeldedVertices[*v1_idx] = lowest;
ioWeldedVertices[*v2_idx] = lowest;
break;
}
}
}
}
static void sIndexifyVerticesRecursively(const TriangleList &inTriangles, uint32 *ioVertexIndices, uint inNumVertices, uint32 *ioScratch, Array<uint32> &ioWeldedVertices, float inVertexWeldDistance, uint inMaxRecursion)
{
// Check if we have few enough vertices to do a brute force search
// Or if we've recursed too deep (this means we chipped off a few vertices each iteration because all points are very close)
if (inNumVertices <= 8 || inMaxRecursion == 0)
{
sIndexifyVerticesBruteForce(inTriangles, ioVertexIndices, ioVertexIndices + inNumVertices, ioWeldedVertices, inVertexWeldDistance);
return;
}
// Calculate bounds
AABox bounds;
for (const uint32 *v = ioVertexIndices, *v_end = ioVertexIndices + inNumVertices; v < v_end; ++v)
bounds.Encapsulate(sIndexifyGetVec3(inTriangles, *v));
// Determine split plane
int split_axis = bounds.GetExtent().GetHighestComponentIndex();
float split_value = bounds.GetCenter()[split_axis];
// Partition vertices
uint32 *v_read = ioVertexIndices, *v_write = ioVertexIndices, *v_end = ioVertexIndices + inNumVertices;
uint32 *scratch = ioScratch;
while (v_read < v_end)
{
// Calculate distance to plane
float distance_to_split_plane = sIndexifyGetFloat3(inTriangles, *v_read)[split_axis] - split_value;
if (distance_to_split_plane < -inVertexWeldDistance)
{
// Vertex is on the right side
*v_write = *v_read;
++v_read;
++v_write;
}
else if (distance_to_split_plane > inVertexWeldDistance)
{
// Vertex is on the wrong side, swap with the last vertex
--v_end;
std::swap(*v_read, *v_end);
}
else
{
// Vertex is too close to the split plane, it goes on both sides
*scratch++ = *v_read++;
}
}
// Check if we made any progress
uint num_vertices_on_both_sides = (uint)(scratch - ioScratch);
if (num_vertices_on_both_sides == inNumVertices)
{
sIndexifyVerticesBruteForce(inTriangles, ioVertexIndices, ioVertexIndices + inNumVertices, ioWeldedVertices, inVertexWeldDistance);
return;
}
// Calculate how we classified the vertices
uint num_vertices_left = (uint)(v_write - ioVertexIndices);
uint num_vertices_right = (uint)(ioVertexIndices + inNumVertices - v_end);
JPH_ASSERT(num_vertices_left + num_vertices_right + num_vertices_on_both_sides == inNumVertices);
memcpy(v_write, ioScratch, num_vertices_on_both_sides * sizeof(uint32));
// Recurse
uint max_recursion = inMaxRecursion - 1;
sIndexifyVerticesRecursively(inTriangles, ioVertexIndices, num_vertices_left + num_vertices_on_both_sides, ioScratch, ioWeldedVertices, inVertexWeldDistance, max_recursion);
sIndexifyVerticesRecursively(inTriangles, ioVertexIndices + num_vertices_left, num_vertices_right + num_vertices_on_both_sides, ioScratch, ioWeldedVertices, inVertexWeldDistance, max_recursion);
}
void Indexify(const TriangleList &inTriangles, VertexList &outVertices, IndexedTriangleList &outTriangles, float inVertexWeldDistance)
{
uint num_triangles = (uint)inTriangles.size();
uint num_vertices = num_triangles * 3;
// Create a list of all vertex indices
Array<uint32> vertex_indices;
vertex_indices.resize(num_vertices);
for (uint i = 0; i < num_vertices; ++i)
vertex_indices[i] = i;
// Link each vertex to itself
Array<uint32> welded_vertices;
welded_vertices.resize(num_vertices);
for (uint i = 0; i < num_vertices; ++i)
welded_vertices[i] = i;
// A scope to free memory used by the scratch array
{
// Some scratch memory, used for the vertices that fall in both partitions
Array<uint32> scratch;
scratch.resize(num_vertices);
// Recursively split the vertices
sIndexifyVerticesRecursively(inTriangles, vertex_indices.data(), num_vertices, scratch.data(), welded_vertices, inVertexWeldDistance, 32);
}
// Do a pass to complete the welding, linking each vertex to the vertex it is welded to
// (and since we're going from 0 to N we can be sure that the vertex we're linking to is already linked to the lowest vertex)
uint num_resulting_vertices = 0;
for (uint i = 0; i < num_vertices; ++i)
{
JPH_ASSERT(welded_vertices[welded_vertices[i]] <= welded_vertices[i]);
welded_vertices[i] = welded_vertices[welded_vertices[i]];
if (welded_vertices[i] == i)
++num_resulting_vertices;
}
// Collect the vertices
outVertices.clear();
outVertices.reserve(num_resulting_vertices);
for (uint i = 0; i < num_vertices; ++i)
if (welded_vertices[i] == i)
{
// New vertex
welded_vertices[i] = (uint32)outVertices.size();
outVertices.push_back(sIndexifyGetFloat3(inTriangles, i));
}
else
{
// Reused vertex, remap index
welded_vertices[i] = welded_vertices[welded_vertices[i]];
}
// Create indexed triangles
outTriangles.clear();
outTriangles.reserve(num_triangles);
for (uint t = 0; t < num_triangles; ++t)
{
IndexedTriangle it;
it.mMaterialIndex = inTriangles[t].mMaterialIndex;
it.mUserData = inTriangles[t].mUserData;
for (int v = 0; v < 3; ++v)
it.mIdx[v] = welded_vertices[t * 3 + v];
if (!it.IsDegenerate(outVertices))
outTriangles.push_back(it);
}
}
void Deindexify(const VertexList &inVertices, const IndexedTriangleList &inTriangles, TriangleList &outTriangles)
{
outTriangles.resize(inTriangles.size());
for (size_t t = 0; t < inTriangles.size(); ++t)
{
const IndexedTriangle &in = inTriangles[t];
Triangle &out = outTriangles[t];
out.mMaterialIndex = in.mMaterialIndex;
out.mUserData = in.mUserData;
for (int v = 0; v < 3; ++v)
out.mV[v] = inVertices[in.mIdx[v]];
}
}
JPH_NAMESPACE_END

View File

@@ -0,0 +1,19 @@
// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#pragma once
#include <Jolt/Geometry/Triangle.h>
#include <Jolt/Geometry/IndexedTriangle.h>
JPH_NAMESPACE_BEGIN
/// Take a list of triangles and get the unique set of vertices and use them to create indexed triangles.
/// Vertices that are less than inVertexWeldDistance apart will be combined to a single vertex.
JPH_EXPORT void Indexify(const TriangleList &inTriangles, VertexList &outVertices, IndexedTriangleList &outTriangles, float inVertexWeldDistance = 1.0e-4f);
/// Take a list of indexed triangles and unpack them
JPH_EXPORT void Deindexify(const VertexList &inVertices, const IndexedTriangleList &inTriangles, TriangleList &outTriangles);
JPH_NAMESPACE_END

View File

@@ -0,0 +1,40 @@
// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#pragma once
#include <Jolt/Geometry/AABox.h>
JPH_NAMESPACE_BEGIN
class MortonCode
{
public:
/// First converts a floating point value in the range [0, 1] to a 10 bit fixed point integer.
/// Then expands a 10-bit integer into 30 bits by inserting 2 zeros after each bit.
static uint32 sExpandBits(float inV)
{
JPH_ASSERT(inV >= 0.0f && inV <= 1.0f);
uint32 v = uint32(inV * 1023.0f + 0.5f);
JPH_ASSERT(v < 1024);
v = (v * 0x00010001u) & 0xFF0000FFu;
v = (v * 0x00000101u) & 0x0F00F00Fu;
v = (v * 0x00000011u) & 0xC30C30C3u;
v = (v * 0x00000005u) & 0x49249249u;
return v;
}
/// Calculate the morton code for inVector, given that all vectors lie in inVectorBounds
static uint32 sGetMortonCode(Vec3Arg inVector, const AABox &inVectorBounds)
{
// Convert to 10 bit fixed point
Vec3 scaled = (inVector - inVectorBounds.mMin) / inVectorBounds.GetSize();
uint x = sExpandBits(scaled.GetX());
uint y = sExpandBits(scaled.GetY());
uint z = sExpandBits(scaled.GetZ());
return (x << 2) + (y << 1) + z;
}
};
JPH_NAMESPACE_END

View File

@@ -0,0 +1,178 @@
// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#include <Jolt/Jolt.h>
#include <Jolt/Geometry/OrientedBox.h>
#include <Jolt/Geometry/AABox.h>
JPH_NAMESPACE_BEGIN
bool OrientedBox::Overlaps(const AABox &inBox, float inEpsilon) const
{
// Taken from: Real Time Collision Detection - Christer Ericson
// Chapter 4.4.1, page 103-105.
// Note that the code is swapped around: A is the aabox and B is the oriented box (this saves us from having to invert the orientation of the oriented box)
// Convert AABox to center / extent representation
Vec3 a_center = inBox.GetCenter();
Vec3 a_half_extents = inBox.GetExtent();
// Compute rotation matrix expressing b in a's coordinate frame
Mat44 rot(mOrientation.GetColumn4(0), mOrientation.GetColumn4(1), mOrientation.GetColumn4(2), mOrientation.GetColumn4(3) - Vec4(a_center, 0));
// Compute common subexpressions. Add in an epsilon term to
// counteract arithmetic errors when two edges are parallel and
// their cross product is (near) null (see text for details)
Vec3 epsilon = Vec3::sReplicate(inEpsilon);
Vec3 abs_r[3] { rot.GetAxisX().Abs() + epsilon, rot.GetAxisY().Abs() + epsilon, rot.GetAxisZ().Abs() + epsilon };
// Test axes L = A0, L = A1, L = A2
float ra, rb;
for (int i = 0; i < 3; i++)
{
ra = a_half_extents[i];
rb = mHalfExtents[0] * abs_r[0][i] + mHalfExtents[1] * abs_r[1][i] + mHalfExtents[2] * abs_r[2][i];
if (abs(rot(i, 3)) > ra + rb) return false;
}
// Test axes L = B0, L = B1, L = B2
for (int i = 0; i < 3; i++)
{
ra = a_half_extents.Dot(abs_r[i]);
rb = mHalfExtents[i];
if (abs(rot.GetTranslation().Dot(rot.GetColumn3(i))) > ra + rb) return false;
}
// Test axis L = A0 x B0
ra = a_half_extents[1] * abs_r[0][2] + a_half_extents[2] * abs_r[0][1];
rb = mHalfExtents[1] * abs_r[2][0] + mHalfExtents[2] * abs_r[1][0];
if (abs(rot(2, 3) * rot(1, 0) - rot(1, 3) * rot(2, 0)) > ra + rb) return false;
// Test axis L = A0 x B1
ra = a_half_extents[1] * abs_r[1][2] + a_half_extents[2] * abs_r[1][1];
rb = mHalfExtents[0] * abs_r[2][0] + mHalfExtents[2] * abs_r[0][0];
if (abs(rot(2, 3) * rot(1, 1) - rot(1, 3) * rot(2, 1)) > ra + rb) return false;
// Test axis L = A0 x B2
ra = a_half_extents[1] * abs_r[2][2] + a_half_extents[2] * abs_r[2][1];
rb = mHalfExtents[0] * abs_r[1][0] + mHalfExtents[1] * abs_r[0][0];
if (abs(rot(2, 3) * rot(1, 2) - rot(1, 3) * rot(2, 2)) > ra + rb) return false;
// Test axis L = A1 x B0
ra = a_half_extents[0] * abs_r[0][2] + a_half_extents[2] * abs_r[0][0];
rb = mHalfExtents[1] * abs_r[2][1] + mHalfExtents[2] * abs_r[1][1];
if (abs(rot(0, 3) * rot(2, 0) - rot(2, 3) * rot(0, 0)) > ra + rb) return false;
// Test axis L = A1 x B1
ra = a_half_extents[0] * abs_r[1][2] + a_half_extents[2] * abs_r[1][0];
rb = mHalfExtents[0] * abs_r[2][1] + mHalfExtents[2] * abs_r[0][1];
if (abs(rot(0, 3) * rot(2, 1) - rot(2, 3) * rot(0, 1)) > ra + rb) return false;
// Test axis L = A1 x B2
ra = a_half_extents[0] * abs_r[2][2] + a_half_extents[2] * abs_r[2][0];
rb = mHalfExtents[0] * abs_r[1][1] + mHalfExtents[1] * abs_r[0][1];
if (abs(rot(0, 3) * rot(2, 2) - rot(2, 3) * rot(0, 2)) > ra + rb) return false;
// Test axis L = A2 x B0
ra = a_half_extents[0] * abs_r[0][1] + a_half_extents[1] * abs_r[0][0];
rb = mHalfExtents[1] * abs_r[2][2] + mHalfExtents[2] * abs_r[1][2];
if (abs(rot(1, 3) * rot(0, 0) - rot(0, 3) * rot(1, 0)) > ra + rb) return false;
// Test axis L = A2 x B1
ra = a_half_extents[0] * abs_r[1][1] + a_half_extents[1] * abs_r[1][0];
rb = mHalfExtents[0] * abs_r[2][2] + mHalfExtents[2] * abs_r[0][2];
if (abs(rot(1, 3) * rot(0, 1) - rot(0, 3) * rot(1, 1)) > ra + rb) return false;
// Test axis L = A2 x B2
ra = a_half_extents[0] * abs_r[2][1] + a_half_extents[1] * abs_r[2][0];
rb = mHalfExtents[0] * abs_r[1][2] + mHalfExtents[1] * abs_r[0][2];
if (abs(rot(1, 3) * rot(0, 2) - rot(0, 3) * rot(1, 2)) > ra + rb) return false;
// Since no separating axis is found, the OBB and AAB must be intersecting
return true;
}
bool OrientedBox::Overlaps(const OrientedBox &inBox, float inEpsilon) const
{
// Taken from: Real Time Collision Detection - Christer Ericson
// Chapter 4.4.1, page 103-105.
// Note that A is this, B is inBox
// Compute rotation matrix expressing b in a's coordinate frame
Mat44 rot = mOrientation.InversedRotationTranslation() * inBox.mOrientation;
// Compute common subexpressions. Add in an epsilon term to
// counteract arithmetic errors when two edges are parallel and
// their cross product is (near) null (see text for details)
Vec3 epsilon = Vec3::sReplicate(inEpsilon);
Vec3 abs_r[3] { rot.GetAxisX().Abs() + epsilon, rot.GetAxisY().Abs() + epsilon, rot.GetAxisZ().Abs() + epsilon };
// Test axes L = A0, L = A1, L = A2
float ra, rb;
for (int i = 0; i < 3; i++)
{
ra = mHalfExtents[i];
rb = inBox.mHalfExtents[0] * abs_r[0][i] + inBox.mHalfExtents[1] * abs_r[1][i] + inBox.mHalfExtents[2] * abs_r[2][i];
if (abs(rot(i, 3)) > ra + rb) return false;
}
// Test axes L = B0, L = B1, L = B2
for (int i = 0; i < 3; i++)
{
ra = mHalfExtents.Dot(abs_r[i]);
rb = inBox.mHalfExtents[i];
if (abs(rot.GetTranslation().Dot(rot.GetColumn3(i))) > ra + rb) return false;
}
// Test axis L = A0 x B0
ra = mHalfExtents[1] * abs_r[0][2] + mHalfExtents[2] * abs_r[0][1];
rb = inBox.mHalfExtents[1] * abs_r[2][0] + inBox.mHalfExtents[2] * abs_r[1][0];
if (abs(rot(2, 3) * rot(1, 0) - rot(1, 3) * rot(2, 0)) > ra + rb) return false;
// Test axis L = A0 x B1
ra = mHalfExtents[1] * abs_r[1][2] + mHalfExtents[2] * abs_r[1][1];
rb = inBox.mHalfExtents[0] * abs_r[2][0] + inBox.mHalfExtents[2] * abs_r[0][0];
if (abs(rot(2, 3) * rot(1, 1) - rot(1, 3) * rot(2, 1)) > ra + rb) return false;
// Test axis L = A0 x B2
ra = mHalfExtents[1] * abs_r[2][2] + mHalfExtents[2] * abs_r[2][1];
rb = inBox.mHalfExtents[0] * abs_r[1][0] + inBox.mHalfExtents[1] * abs_r[0][0];
if (abs(rot(2, 3) * rot(1, 2) - rot(1, 3) * rot(2, 2)) > ra + rb) return false;
// Test axis L = A1 x B0
ra = mHalfExtents[0] * abs_r[0][2] + mHalfExtents[2] * abs_r[0][0];
rb = inBox.mHalfExtents[1] * abs_r[2][1] + inBox.mHalfExtents[2] * abs_r[1][1];
if (abs(rot(0, 3) * rot(2, 0) - rot(2, 3) * rot(0, 0)) > ra + rb) return false;
// Test axis L = A1 x B1
ra = mHalfExtents[0] * abs_r[1][2] + mHalfExtents[2] * abs_r[1][0];
rb = inBox.mHalfExtents[0] * abs_r[2][1] + inBox.mHalfExtents[2] * abs_r[0][1];
if (abs(rot(0, 3) * rot(2, 1) - rot(2, 3) * rot(0, 1)) > ra + rb) return false;
// Test axis L = A1 x B2
ra = mHalfExtents[0] * abs_r[2][2] + mHalfExtents[2] * abs_r[2][0];
rb = inBox.mHalfExtents[0] * abs_r[1][1] + inBox.mHalfExtents[1] * abs_r[0][1];
if (abs(rot(0, 3) * rot(2, 2) - rot(2, 3) * rot(0, 2)) > ra + rb) return false;
// Test axis L = A2 x B0
ra = mHalfExtents[0] * abs_r[0][1] + mHalfExtents[1] * abs_r[0][0];
rb = inBox.mHalfExtents[1] * abs_r[2][2] + inBox.mHalfExtents[2] * abs_r[1][2];
if (abs(rot(1, 3) * rot(0, 0) - rot(0, 3) * rot(1, 0)) > ra + rb) return false;
// Test axis L = A2 x B1
ra = mHalfExtents[0] * abs_r[1][1] + mHalfExtents[1] * abs_r[1][0];
rb = inBox.mHalfExtents[0] * abs_r[2][2] + inBox.mHalfExtents[2] * abs_r[0][2];
if (abs(rot(1, 3) * rot(0, 1) - rot(0, 3) * rot(1, 1)) > ra + rb) return false;
// Test axis L = A2 x B2
ra = mHalfExtents[0] * abs_r[2][1] + mHalfExtents[1] * abs_r[2][0];
rb = inBox.mHalfExtents[0] * abs_r[1][2] + inBox.mHalfExtents[1] * abs_r[0][2];
if (abs(rot(1, 3) * rot(0, 2) - rot(0, 3) * rot(1, 2)) > ra + rb) return false;
// Since no separating axis is found, the OBBs must be intersecting
return true;
}
JPH_NAMESPACE_END

View File

@@ -0,0 +1,39 @@
// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#pragma once
#include <Jolt/Geometry/Triangle.h>
#include <Jolt/Geometry/IndexedTriangle.h>
#include <Jolt/Geometry/AABox.h>
#include <Jolt/Math/Mat44.h>
JPH_NAMESPACE_BEGIN
class AABox;
/// Oriented box
class JPH_EXPORT_GCC_BUG_WORKAROUND [[nodiscard]] OrientedBox
{
public:
JPH_OVERRIDE_NEW_DELETE
/// Constructor
OrientedBox() = default;
OrientedBox(Mat44Arg inOrientation, Vec3Arg inHalfExtents) : mOrientation(inOrientation), mHalfExtents(inHalfExtents) { }
/// Construct from axis aligned box and transform. Only works for rotation/translation matrix (no scaling / shearing).
OrientedBox(Mat44Arg inOrientation, const AABox &inBox) : OrientedBox(inOrientation.PreTranslated(inBox.GetCenter()), inBox.GetExtent()) { }
/// Test if oriented box overlaps with axis aligned box each other
bool Overlaps(const AABox &inBox, float inEpsilon = 1.0e-6f) const;
/// Test if two oriented boxes overlap each other
bool Overlaps(const OrientedBox &inBox, float inEpsilon = 1.0e-6f) const;
Mat44 mOrientation; ///< Transform that positions and rotates the local space axis aligned box into world space
Vec3 mHalfExtents; ///< Half extents (half the size of the edge) of the local space axis aligned box
};
JPH_NAMESPACE_END

View File

@@ -0,0 +1,101 @@
// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#pragma once
JPH_NAMESPACE_BEGIN
/// An infinite plane described by the formula X . Normal + Constant = 0.
class [[nodiscard]] Plane
{
public:
JPH_OVERRIDE_NEW_DELETE
/// Constructor
Plane() = default;
explicit Plane(Vec4Arg inNormalAndConstant) : mNormalAndConstant(inNormalAndConstant) { }
Plane(Vec3Arg inNormal, float inConstant) : mNormalAndConstant(inNormal, inConstant) { }
/// Create from point and normal
static Plane sFromPointAndNormal(Vec3Arg inPoint, Vec3Arg inNormal) { return Plane(Vec4(inNormal, -inNormal.Dot(inPoint))); }
/// Create from point and normal, double precision version that more accurately calculates the plane constant
static Plane sFromPointAndNormal(DVec3Arg inPoint, Vec3Arg inNormal) { return Plane(Vec4(inNormal, -float(DVec3(inNormal).Dot(inPoint)))); }
/// Create from 3 counter clockwise points
static Plane sFromPointsCCW(Vec3Arg inV1, Vec3Arg inV2, Vec3Arg inV3) { return sFromPointAndNormal(inV1, (inV2 - inV1).Cross(inV3 - inV1).Normalized()); }
// Properties
Vec3 GetNormal() const { return Vec3(mNormalAndConstant); }
void SetNormal(Vec3Arg inNormal) { mNormalAndConstant = Vec4(inNormal, mNormalAndConstant.GetW()); }
float GetConstant() const { return mNormalAndConstant.GetW(); }
void SetConstant(float inConstant) { mNormalAndConstant.SetW(inConstant); }
/// Offset the plane (positive value means move it in the direction of the plane normal)
Plane Offset(float inDistance) const { return Plane(mNormalAndConstant - Vec4(Vec3::sZero(), inDistance)); }
/// Transform the plane by a matrix
inline Plane GetTransformed(Mat44Arg inTransform) const
{
Vec3 transformed_normal = inTransform.Multiply3x3(GetNormal());
return Plane(transformed_normal, GetConstant() - inTransform.GetTranslation().Dot(transformed_normal));
}
/// Scale the plane, can handle non-uniform and negative scaling
inline Plane Scaled(Vec3Arg inScale) const
{
Vec3 scaled_normal = GetNormal() / inScale;
float scaled_normal_length = scaled_normal.Length();
return Plane(scaled_normal / scaled_normal_length, GetConstant() / scaled_normal_length);
}
/// Distance point to plane
float SignedDistance(Vec3Arg inPoint) const { return inPoint.Dot(GetNormal()) + GetConstant(); }
/// Project inPoint onto the plane
Vec3 ProjectPointOnPlane(Vec3Arg inPoint) const { return inPoint - GetNormal() * SignedDistance(inPoint); }
/// Returns intersection point between 3 planes
static bool sIntersectPlanes(const Plane &inP1, const Plane &inP2, const Plane &inP3, Vec3 &outPoint)
{
// We solve the equation:
// |ax, ay, az, aw| | x | | 0 |
// |bx, by, bz, bw| * | y | = | 0 |
// |cx, cy, cz, cw| | z | | 0 |
// | 0, 0, 0, 1| | 1 | | 1 |
// Where normal of plane 1 = (ax, ay, az), plane constant of 1 = aw, normal of plane 2 = (bx, by, bz) etc.
// This involves inverting the matrix and multiplying it with [0, 0, 0, 1]
// Fetch the normals and plane constants for the three planes
Vec4 a = inP1.mNormalAndConstant;
Vec4 b = inP2.mNormalAndConstant;
Vec4 c = inP3.mNormalAndConstant;
// Result is a vector that we have to divide by:
float denominator = Vec3(a).Dot(Vec3(b).Cross(Vec3(c)));
if (denominator == 0.0f)
return false;
// The numerator is:
// [aw*(bz*cy-by*cz)+ay*(bw*cz-bz*cw)+az*(by*cw-bw*cy)]
// [aw*(bx*cz-bz*cx)+ax*(bz*cw-bw*cz)+az*(bw*cx-bx*cw)]
// [aw*(by*cx-bx*cy)+ax*(bw*cy-by*cw)+ay*(bx*cw-bw*cx)]
Vec4 numerator =
a.SplatW() * (b.Swizzle<SWIZZLE_Z, SWIZZLE_X, SWIZZLE_Y, SWIZZLE_UNUSED>() * c.Swizzle<SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_X, SWIZZLE_UNUSED>() - b.Swizzle<SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_X, SWIZZLE_UNUSED>() * c.Swizzle<SWIZZLE_Z, SWIZZLE_X, SWIZZLE_Y, SWIZZLE_UNUSED>())
+ a.Swizzle<SWIZZLE_Y, SWIZZLE_X, SWIZZLE_X, SWIZZLE_UNUSED>() * (b.Swizzle<SWIZZLE_W, SWIZZLE_Z, SWIZZLE_W, SWIZZLE_UNUSED>() * c.Swizzle<SWIZZLE_Z, SWIZZLE_W, SWIZZLE_Y, SWIZZLE_UNUSED>() - b.Swizzle<SWIZZLE_Z, SWIZZLE_W, SWIZZLE_Y, SWIZZLE_UNUSED>() * c.Swizzle<SWIZZLE_W, SWIZZLE_Z, SWIZZLE_W, SWIZZLE_UNUSED>())
+ a.Swizzle<SWIZZLE_Z, SWIZZLE_Z, SWIZZLE_Y, SWIZZLE_UNUSED>() * (b.Swizzle<SWIZZLE_Y, SWIZZLE_W, SWIZZLE_X, SWIZZLE_UNUSED>() * c.Swizzle<SWIZZLE_W, SWIZZLE_X, SWIZZLE_W, SWIZZLE_UNUSED>() - b.Swizzle<SWIZZLE_W, SWIZZLE_X, SWIZZLE_W, SWIZZLE_UNUSED>() * c.Swizzle<SWIZZLE_Y, SWIZZLE_W, SWIZZLE_X, SWIZZLE_UNUSED>());
outPoint = Vec3(numerator) / denominator;
return true;
}
private:
#ifdef JPH_OBJECT_STREAM
friend void CreateRTTIPlane(class RTTI &); // For JPH_IMPLEMENT_SERIALIZABLE_OUTSIDE_CLASS
#endif
Vec4 mNormalAndConstant; ///< XYZ = normal, W = constant, plane: x . normal + constant = 0
};
JPH_NAMESPACE_END

View File

@@ -0,0 +1,241 @@
// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#pragma once
JPH_NAMESPACE_BEGIN
/// Helper structure holding the reciprocal of a ray for Ray vs AABox testing
class RayInvDirection
{
public:
/// Constructors
inline RayInvDirection() = default;
inline explicit RayInvDirection(Vec3Arg inDirection) { Set(inDirection); }
/// Set reciprocal from ray direction
inline void Set(Vec3Arg inDirection)
{
// if (abs(inDirection) <= Epsilon) the ray is nearly parallel to the slab.
mIsParallel = Vec3::sLessOrEqual(inDirection.Abs(), Vec3::sReplicate(1.0e-20f));
// Calculate 1 / direction while avoiding division by zero
mInvDirection = Vec3::sSelect(inDirection, Vec3::sOne(), mIsParallel).Reciprocal();
}
Vec3 mInvDirection; ///< 1 / ray direction
UVec4 mIsParallel; ///< for each component if it is parallel to the coordinate axis
};
/// Intersect AABB with ray, returns minimal distance along ray or FLT_MAX if no hit
/// Note: Can return negative value if ray starts in box
JPH_INLINE float RayAABox(Vec3Arg inOrigin, const RayInvDirection &inInvDirection, Vec3Arg inBoundsMin, Vec3Arg inBoundsMax)
{
// Constants
Vec3 flt_min = Vec3::sReplicate(-FLT_MAX);
Vec3 flt_max = Vec3::sReplicate(FLT_MAX);
// Test against all three axes simultaneously.
Vec3 t1 = (inBoundsMin - inOrigin) * inInvDirection.mInvDirection;
Vec3 t2 = (inBoundsMax - inOrigin) * inInvDirection.mInvDirection;
// Compute the max of min(t1,t2) and the min of max(t1,t2) ensuring we don't
// use the results from any directions parallel to the slab.
Vec3 t_min = Vec3::sSelect(Vec3::sMin(t1, t2), flt_min, inInvDirection.mIsParallel);
Vec3 t_max = Vec3::sSelect(Vec3::sMax(t1, t2), flt_max, inInvDirection.mIsParallel);
// t_min.xyz = maximum(t_min.x, t_min.y, t_min.z);
t_min = Vec3::sMax(t_min, t_min.Swizzle<SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_X>());
t_min = Vec3::sMax(t_min, t_min.Swizzle<SWIZZLE_Z, SWIZZLE_X, SWIZZLE_Y>());
// t_max.xyz = minimum(t_max.x, t_max.y, t_max.z);
t_max = Vec3::sMin(t_max, t_max.Swizzle<SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_X>());
t_max = Vec3::sMin(t_max, t_max.Swizzle<SWIZZLE_Z, SWIZZLE_X, SWIZZLE_Y>());
// if (t_min > t_max) return FLT_MAX;
UVec4 no_intersection = Vec3::sGreater(t_min, t_max);
// if (t_max < 0.0f) return FLT_MAX;
no_intersection = UVec4::sOr(no_intersection, Vec3::sLess(t_max, Vec3::sZero()));
// if (inInvDirection.mIsParallel && !(Min <= inOrigin && inOrigin <= Max)) return FLT_MAX; else return t_min;
UVec4 no_parallel_overlap = UVec4::sOr(Vec3::sLess(inOrigin, inBoundsMin), Vec3::sGreater(inOrigin, inBoundsMax));
no_intersection = UVec4::sOr(no_intersection, UVec4::sAnd(inInvDirection.mIsParallel, no_parallel_overlap));
no_intersection = UVec4::sOr(no_intersection, no_intersection.SplatY());
no_intersection = UVec4::sOr(no_intersection, no_intersection.SplatZ());
return Vec3::sSelect(t_min, flt_max, no_intersection).GetX();
}
/// Intersect 4 AABBs with ray, returns minimal distance along ray or FLT_MAX if no hit
/// Note: Can return negative value if ray starts in box
JPH_INLINE Vec4 RayAABox4(Vec3Arg inOrigin, const RayInvDirection &inInvDirection, Vec4Arg inBoundsMinX, Vec4Arg inBoundsMinY, Vec4Arg inBoundsMinZ, Vec4Arg inBoundsMaxX, Vec4Arg inBoundsMaxY, Vec4Arg inBoundsMaxZ)
{
// Constants
Vec4 flt_min = Vec4::sReplicate(-FLT_MAX);
Vec4 flt_max = Vec4::sReplicate(FLT_MAX);
// Origin
Vec4 originx = inOrigin.SplatX();
Vec4 originy = inOrigin.SplatY();
Vec4 originz = inOrigin.SplatZ();
// Parallel
UVec4 parallelx = inInvDirection.mIsParallel.SplatX();
UVec4 parallely = inInvDirection.mIsParallel.SplatY();
UVec4 parallelz = inInvDirection.mIsParallel.SplatZ();
// Inverse direction
Vec4 invdirx = inInvDirection.mInvDirection.SplatX();
Vec4 invdiry = inInvDirection.mInvDirection.SplatY();
Vec4 invdirz = inInvDirection.mInvDirection.SplatZ();
// Test against all three axes simultaneously.
Vec4 t1x = (inBoundsMinX - originx) * invdirx;
Vec4 t1y = (inBoundsMinY - originy) * invdiry;
Vec4 t1z = (inBoundsMinZ - originz) * invdirz;
Vec4 t2x = (inBoundsMaxX - originx) * invdirx;
Vec4 t2y = (inBoundsMaxY - originy) * invdiry;
Vec4 t2z = (inBoundsMaxZ - originz) * invdirz;
// Compute the max of min(t1,t2) and the min of max(t1,t2) ensuring we don't
// use the results from any directions parallel to the slab.
Vec4 t_minx = Vec4::sSelect(Vec4::sMin(t1x, t2x), flt_min, parallelx);
Vec4 t_miny = Vec4::sSelect(Vec4::sMin(t1y, t2y), flt_min, parallely);
Vec4 t_minz = Vec4::sSelect(Vec4::sMin(t1z, t2z), flt_min, parallelz);
Vec4 t_maxx = Vec4::sSelect(Vec4::sMax(t1x, t2x), flt_max, parallelx);
Vec4 t_maxy = Vec4::sSelect(Vec4::sMax(t1y, t2y), flt_max, parallely);
Vec4 t_maxz = Vec4::sSelect(Vec4::sMax(t1z, t2z), flt_max, parallelz);
// t_min.xyz = maximum(t_min.x, t_min.y, t_min.z);
Vec4 t_min = Vec4::sMax(Vec4::sMax(t_minx, t_miny), t_minz);
// t_max.xyz = minimum(t_max.x, t_max.y, t_max.z);
Vec4 t_max = Vec4::sMin(Vec4::sMin(t_maxx, t_maxy), t_maxz);
// if (t_min > t_max) return FLT_MAX;
UVec4 no_intersection = Vec4::sGreater(t_min, t_max);
// if (t_max < 0.0f) return FLT_MAX;
no_intersection = UVec4::sOr(no_intersection, Vec4::sLess(t_max, Vec4::sZero()));
// if bounds are invalid return FLOAT_MAX;
UVec4 bounds_invalid = UVec4::sOr(UVec4::sOr(Vec4::sGreater(inBoundsMinX, inBoundsMaxX), Vec4::sGreater(inBoundsMinY, inBoundsMaxY)), Vec4::sGreater(inBoundsMinZ, inBoundsMaxZ));
no_intersection = UVec4::sOr(no_intersection, bounds_invalid);
// if (inInvDirection.mIsParallel && !(Min <= inOrigin && inOrigin <= Max)) return FLT_MAX; else return t_min;
UVec4 no_parallel_overlapx = UVec4::sAnd(parallelx, UVec4::sOr(Vec4::sLess(originx, inBoundsMinX), Vec4::sGreater(originx, inBoundsMaxX)));
UVec4 no_parallel_overlapy = UVec4::sAnd(parallely, UVec4::sOr(Vec4::sLess(originy, inBoundsMinY), Vec4::sGreater(originy, inBoundsMaxY)));
UVec4 no_parallel_overlapz = UVec4::sAnd(parallelz, UVec4::sOr(Vec4::sLess(originz, inBoundsMinZ), Vec4::sGreater(originz, inBoundsMaxZ)));
no_intersection = UVec4::sOr(no_intersection, UVec4::sOr(UVec4::sOr(no_parallel_overlapx, no_parallel_overlapy), no_parallel_overlapz));
return Vec4::sSelect(t_min, flt_max, no_intersection);
}
/// Intersect AABB with ray, returns minimal and maximal distance along ray or FLT_MAX, -FLT_MAX if no hit
/// Note: Can return negative value for outMin if ray starts in box
JPH_INLINE void RayAABox(Vec3Arg inOrigin, const RayInvDirection &inInvDirection, Vec3Arg inBoundsMin, Vec3Arg inBoundsMax, float &outMin, float &outMax)
{
// Constants
Vec3 flt_min = Vec3::sReplicate(-FLT_MAX);
Vec3 flt_max = Vec3::sReplicate(FLT_MAX);
// Test against all three axes simultaneously.
Vec3 t1 = (inBoundsMin - inOrigin) * inInvDirection.mInvDirection;
Vec3 t2 = (inBoundsMax - inOrigin) * inInvDirection.mInvDirection;
// Compute the max of min(t1,t2) and the min of max(t1,t2) ensuring we don't
// use the results from any directions parallel to the slab.
Vec3 t_min = Vec3::sSelect(Vec3::sMin(t1, t2), flt_min, inInvDirection.mIsParallel);
Vec3 t_max = Vec3::sSelect(Vec3::sMax(t1, t2), flt_max, inInvDirection.mIsParallel);
// t_min.xyz = maximum(t_min.x, t_min.y, t_min.z);
t_min = Vec3::sMax(t_min, t_min.Swizzle<SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_X>());
t_min = Vec3::sMax(t_min, t_min.Swizzle<SWIZZLE_Z, SWIZZLE_X, SWIZZLE_Y>());
// t_max.xyz = minimum(t_max.x, t_max.y, t_max.z);
t_max = Vec3::sMin(t_max, t_max.Swizzle<SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_X>());
t_max = Vec3::sMin(t_max, t_max.Swizzle<SWIZZLE_Z, SWIZZLE_X, SWIZZLE_Y>());
// if (t_min > t_max) return FLT_MAX;
UVec4 no_intersection = Vec3::sGreater(t_min, t_max);
// if (t_max < 0.0f) return FLT_MAX;
no_intersection = UVec4::sOr(no_intersection, Vec3::sLess(t_max, Vec3::sZero()));
// if (inInvDirection.mIsParallel && !(Min <= inOrigin && inOrigin <= Max)) return FLT_MAX; else return t_min;
UVec4 no_parallel_overlap = UVec4::sOr(Vec3::sLess(inOrigin, inBoundsMin), Vec3::sGreater(inOrigin, inBoundsMax));
no_intersection = UVec4::sOr(no_intersection, UVec4::sAnd(inInvDirection.mIsParallel, no_parallel_overlap));
no_intersection = UVec4::sOr(no_intersection, no_intersection.SplatY());
no_intersection = UVec4::sOr(no_intersection, no_intersection.SplatZ());
outMin = Vec3::sSelect(t_min, flt_max, no_intersection).GetX();
outMax = Vec3::sSelect(t_max, flt_min, no_intersection).GetX();
}
/// Intersect AABB with ray, returns true if there is a hit closer than inClosest
JPH_INLINE bool RayAABoxHits(Vec3Arg inOrigin, const RayInvDirection &inInvDirection, Vec3Arg inBoundsMin, Vec3Arg inBoundsMax, float inClosest)
{
// Constants
Vec3 flt_min = Vec3::sReplicate(-FLT_MAX);
Vec3 flt_max = Vec3::sReplicate(FLT_MAX);
// Test against all three axes simultaneously.
Vec3 t1 = (inBoundsMin - inOrigin) * inInvDirection.mInvDirection;
Vec3 t2 = (inBoundsMax - inOrigin) * inInvDirection.mInvDirection;
// Compute the max of min(t1,t2) and the min of max(t1,t2) ensuring we don't
// use the results from any directions parallel to the slab.
Vec3 t_min = Vec3::sSelect(Vec3::sMin(t1, t2), flt_min, inInvDirection.mIsParallel);
Vec3 t_max = Vec3::sSelect(Vec3::sMax(t1, t2), flt_max, inInvDirection.mIsParallel);
// t_min.xyz = maximum(t_min.x, t_min.y, t_min.z);
t_min = Vec3::sMax(t_min, t_min.Swizzle<SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_X>());
t_min = Vec3::sMax(t_min, t_min.Swizzle<SWIZZLE_Z, SWIZZLE_X, SWIZZLE_Y>());
// t_max.xyz = minimum(t_max.x, t_max.y, t_max.z);
t_max = Vec3::sMin(t_max, t_max.Swizzle<SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_X>());
t_max = Vec3::sMin(t_max, t_max.Swizzle<SWIZZLE_Z, SWIZZLE_X, SWIZZLE_Y>());
// if (t_min > t_max) return false;
UVec4 no_intersection = Vec3::sGreater(t_min, t_max);
// if (t_max < 0.0f) return false;
no_intersection = UVec4::sOr(no_intersection, Vec3::sLess(t_max, Vec3::sZero()));
// if (t_min > inClosest) return false;
no_intersection = UVec4::sOr(no_intersection, Vec3::sGreater(t_min, Vec3::sReplicate(inClosest)));
// if (inInvDirection.mIsParallel && !(Min <= inOrigin && inOrigin <= Max)) return false; else return true;
UVec4 no_parallel_overlap = UVec4::sOr(Vec3::sLess(inOrigin, inBoundsMin), Vec3::sGreater(inOrigin, inBoundsMax));
no_intersection = UVec4::sOr(no_intersection, UVec4::sAnd(inInvDirection.mIsParallel, no_parallel_overlap));
return !no_intersection.TestAnyXYZTrue();
}
/// Intersect AABB with ray without hit fraction, based on separating axis test
/// @see http://www.codercorner.com/RayAABB.cpp
JPH_INLINE bool RayAABoxHits(Vec3Arg inOrigin, Vec3Arg inDirection, Vec3Arg inBoundsMin, Vec3Arg inBoundsMax)
{
Vec3 extents = inBoundsMax - inBoundsMin;
Vec3 diff = 2.0f * inOrigin - inBoundsMin - inBoundsMax;
Vec3 abs_diff = diff.Abs();
UVec4 no_intersection = UVec4::sAnd(Vec3::sGreater(abs_diff, extents), Vec3::sGreaterOrEqual(diff * inDirection, Vec3::sZero()));
Vec3 abs_dir = inDirection.Abs();
Vec3 abs_dir_yzz = abs_dir.Swizzle<SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z>();
Vec3 abs_dir_xyx = abs_dir.Swizzle<SWIZZLE_X, SWIZZLE_Y, SWIZZLE_X>();
Vec3 extents_yzz = extents.Swizzle<SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z>();
Vec3 extents_xyx = extents.Swizzle<SWIZZLE_X, SWIZZLE_Y, SWIZZLE_X>();
Vec3 diff_yzx = diff.Swizzle<SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_X>();
Vec3 dir_yzx = inDirection.Swizzle<SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_X>();
no_intersection = UVec4::sOr(no_intersection, Vec3::sGreater((inDirection * diff_yzx - dir_yzx * diff).Abs(), extents_xyx * abs_dir_yzz + extents_yzz * abs_dir_xyx));
return !no_intersection.TestAnyXYZTrue();
}
JPH_NAMESPACE_END

View File

@@ -0,0 +1,37 @@
// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#pragma once
#include <Jolt/Geometry/RayCylinder.h>
#include <Jolt/Geometry/RaySphere.h>
JPH_NAMESPACE_BEGIN
/// Tests a ray starting at inRayOrigin and extending infinitely in inRayDirection
/// against a capsule centered around the origin with its axis along the Y axis and half height specified.
/// @return FLT_MAX if there is no intersection, otherwise the fraction along the ray.
/// @param inRayDirection Ray direction. Does not need to be normalized.
/// @param inRayOrigin Origin of the ray. If the ray starts inside the capsule, the returned fraction will be 0.
/// @param inCapsuleHalfHeight Distance from the origin to the center of the top sphere (or that of the bottom)
/// @param inCapsuleRadius Radius of the top/bottom sphere
JPH_INLINE float RayCapsule(Vec3Arg inRayOrigin, Vec3Arg inRayDirection, float inCapsuleHalfHeight, float inCapsuleRadius)
{
// Test infinite cylinder
float cylinder = RayCylinder(inRayOrigin, inRayDirection, inCapsuleRadius);
if (cylinder == FLT_MAX)
return FLT_MAX;
// If this hit is in the finite cylinder we have our fraction
if (abs(inRayOrigin.GetY() + cylinder * inRayDirection.GetY()) <= inCapsuleHalfHeight)
return cylinder;
// Test upper and lower sphere
Vec3 sphere_center(0, inCapsuleHalfHeight, 0);
float upper = RaySphere(inRayOrigin, inRayDirection, sphere_center, inCapsuleRadius);
float lower = RaySphere(inRayOrigin, inRayDirection, -sphere_center, inCapsuleRadius);
return min(upper, lower);
}
JPH_NAMESPACE_END

View File

@@ -0,0 +1,101 @@
// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#pragma once
#include <Jolt/Math/FindRoot.h>
JPH_NAMESPACE_BEGIN
/// Tests a ray starting at inRayOrigin and extending infinitely in inRayDirection
/// against an infinite cylinder centered along the Y axis
/// @return FLT_MAX if there is no intersection, otherwise the fraction along the ray.
/// @param inRayDirection Direction of the ray. Does not need to be normalized.
/// @param inRayOrigin Origin of the ray. If the ray starts inside the cylinder, the returned fraction will be 0.
/// @param inCylinderRadius Radius of the infinite cylinder
JPH_INLINE float RayCylinder(Vec3Arg inRayOrigin, Vec3Arg inRayDirection, float inCylinderRadius)
{
// Remove Y component of ray to see of ray intersects with infinite cylinder
UVec4 mask_y = UVec4(0, 0xffffffff, 0, 0);
Vec3 origin_xz = Vec3::sSelect(inRayOrigin, Vec3::sZero(), mask_y);
float origin_xz_len_sq = origin_xz.LengthSq();
float r_sq = Square(inCylinderRadius);
if (origin_xz_len_sq > r_sq)
{
// Ray starts outside of the infinite cylinder
// Solve: |RayOrigin_xz + fraction * RayDirection_xz|^2 = r^2 to find fraction
Vec3 direction_xz = Vec3::sSelect(inRayDirection, Vec3::sZero(), mask_y);
float a = direction_xz.LengthSq();
float b = 2.0f * origin_xz.Dot(direction_xz);
float c = origin_xz_len_sq - r_sq;
float fraction1, fraction2;
if (FindRoot(a, b, c, fraction1, fraction2) == 0)
return FLT_MAX; // No intersection with infinite cylinder
// Get fraction corresponding to the ray entering the circle
float fraction = min(fraction1, fraction2);
if (fraction >= 0.0f)
return fraction;
}
else
{
// Ray starts inside the infinite cylinder
return 0.0f;
}
// No collision
return FLT_MAX;
}
/// Test a ray against a cylinder centered around the origin with its axis along the Y axis and half height specified.
/// @return FLT_MAX if there is no intersection, otherwise the fraction along the ray.
/// @param inRayDirection Ray direction. Does not need to be normalized.
/// @param inRayOrigin Origin of the ray. If the ray starts inside the cylinder, the returned fraction will be 0.
/// @param inCylinderRadius Radius of the cylinder
/// @param inCylinderHalfHeight Distance from the origin to the top (or bottom) of the cylinder
JPH_INLINE float RayCylinder(Vec3Arg inRayOrigin, Vec3Arg inRayDirection, float inCylinderHalfHeight, float inCylinderRadius)
{
// Test infinite cylinder
float fraction = RayCylinder(inRayOrigin, inRayDirection, inCylinderRadius);
if (fraction == FLT_MAX)
return FLT_MAX;
// If this hit is in the finite cylinder we have our fraction
if (abs(inRayOrigin.GetY() + fraction * inRayDirection.GetY()) <= inCylinderHalfHeight)
return fraction;
// Check if ray could hit the top or bottom plane of the cylinder
float direction_y = inRayDirection.GetY();
if (direction_y != 0.0f)
{
// Solving line equation: x = ray_origin + fraction * ray_direction
// and plane equation: plane_normal . x + plane_constant = 0
// fraction = (-plane_constant - plane_normal . ray_origin) / (plane_normal . ray_direction)
// when the ray_direction.y < 0:
// plane_constant = -cylinder_half_height, plane_normal = (0, 1, 0)
// else
// plane_constant = -cylinder_half_height, plane_normal = (0, -1, 0)
float origin_y = inRayOrigin.GetY();
float plane_fraction;
if (direction_y < 0.0f)
plane_fraction = (inCylinderHalfHeight - origin_y) / direction_y;
else
plane_fraction = -(inCylinderHalfHeight + origin_y) / direction_y;
// Check if the hit is in front of the ray
if (plane_fraction >= 0.0f)
{
// Test if this hit is inside the cylinder
Vec3 point = inRayOrigin + plane_fraction * inRayDirection;
float dist_sq = Square(point.GetX()) + Square(point.GetZ());
if (dist_sq <= Square(inCylinderRadius))
return plane_fraction;
}
}
// No collision
return FLT_MAX;
}
JPH_NAMESPACE_END

View File

@@ -0,0 +1,96 @@
// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#pragma once
#include <Jolt/Math/FindRoot.h>
JPH_NAMESPACE_BEGIN
/// Tests a ray starting at inRayOrigin and extending infinitely in inRayDirection against a sphere,
/// @return FLT_MAX if there is no intersection, otherwise the fraction along the ray.
/// @param inRayOrigin Ray origin. If the ray starts inside the sphere, the returned fraction will be 0.
/// @param inRayDirection Ray direction. Does not need to be normalized.
/// @param inSphereCenter Position of the center of the sphere
/// @param inSphereRadius Radius of the sphere
JPH_INLINE float RaySphere(Vec3Arg inRayOrigin, Vec3Arg inRayDirection, Vec3Arg inSphereCenter, float inSphereRadius)
{
// Solve: |RayOrigin + fraction * RayDirection - SphereCenter|^2 = SphereRadius^2 for fraction
Vec3 center_origin = inRayOrigin - inSphereCenter;
float a = inRayDirection.LengthSq();
float b = 2.0f * inRayDirection.Dot(center_origin);
float c = center_origin.LengthSq() - inSphereRadius * inSphereRadius;
float fraction1, fraction2;
if (FindRoot(a, b, c, fraction1, fraction2) == 0)
return c <= 0.0f? 0.0f : FLT_MAX; // Return if origin is inside the sphere
// Sort so that the smallest is first
if (fraction1 > fraction2)
std::swap(fraction1, fraction2);
// Test solution with lowest fraction, this will be the ray entering the sphere
if (fraction1 >= 0.0f)
return fraction1; // Sphere is before the ray start
// Test solution with highest fraction, this will be the ray leaving the sphere
if (fraction2 >= 0.0f)
return 0.0f; // We start inside the sphere
// No solution
return FLT_MAX;
}
/// Tests a ray starting at inRayOrigin and extending infinitely in inRayDirection against a sphere.
/// Outputs entry and exit points (outMinFraction and outMaxFraction) along the ray (which could be negative if the hit point is before the start of the ray).
/// @param inRayOrigin Ray origin. If the ray starts inside the sphere, the returned fraction will be 0.
/// @param inRayDirection Ray direction. Does not need to be normalized.
/// @param inSphereCenter Position of the center of the sphere.
/// @param inSphereRadius Radius of the sphere.
/// @param outMinFraction Returned lowest intersection fraction
/// @param outMaxFraction Returned highest intersection fraction
/// @return The amount of intersections with the sphere.
/// If 1 intersection is returned outMinFraction will be equal to outMaxFraction
JPH_INLINE int RaySphere(Vec3Arg inRayOrigin, Vec3Arg inRayDirection, Vec3Arg inSphereCenter, float inSphereRadius, float &outMinFraction, float &outMaxFraction)
{
// Solve: |RayOrigin + fraction * RayDirection - SphereCenter|^2 = SphereRadius^2 for fraction
Vec3 center_origin = inRayOrigin - inSphereCenter;
float a = inRayDirection.LengthSq();
float b = 2.0f * inRayDirection.Dot(center_origin);
float c = center_origin.LengthSq() - inSphereRadius * inSphereRadius;
float fraction1, fraction2;
switch (FindRoot(a, b, c, fraction1, fraction2))
{
case 0:
if (c <= 0.0f)
{
// Origin inside sphere
outMinFraction = outMaxFraction = 0.0f;
return 1;
}
else
{
// Origin outside of the sphere
return 0;
}
break;
case 1:
// Ray is touching the sphere
outMinFraction = outMaxFraction = fraction1;
return 1;
default:
// Ray enters and exits the sphere
// Sort so that the smallest is first
if (fraction1 > fraction2)
std::swap(fraction1, fraction2);
outMinFraction = fraction1;
outMaxFraction = fraction2;
return 2;
}
}
JPH_NAMESPACE_END

View File

@@ -0,0 +1,158 @@
// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#pragma once
JPH_NAMESPACE_BEGIN
/// Intersect ray with triangle, returns closest point or FLT_MAX if no hit (branch less version)
/// Adapted from: http://en.wikipedia.org/wiki/M%C3%B6ller%E2%80%93Trumbore_intersection_algorithm
JPH_INLINE float RayTriangle(Vec3Arg inOrigin, Vec3Arg inDirection, Vec3Arg inV0, Vec3Arg inV1, Vec3Arg inV2)
{
// Epsilon
Vec3 epsilon = Vec3::sReplicate(1.0e-12f);
// Zero & one
Vec3 zero = Vec3::sZero();
Vec3 one = Vec3::sOne();
// Find vectors for two edges sharing inV0
Vec3 e1 = inV1 - inV0;
Vec3 e2 = inV2 - inV0;
// Begin calculating determinant - also used to calculate u parameter
Vec3 p = inDirection.Cross(e2);
// if determinant is near zero, ray lies in plane of triangle
Vec3 det = Vec3::sReplicate(e1.Dot(p));
// Check if determinant is near zero
UVec4 det_near_zero = Vec3::sLess(det.Abs(), epsilon);
// When the determinant is near zero, set it to one to avoid dividing by zero
det = Vec3::sSelect(det, Vec3::sOne(), det_near_zero);
// Calculate distance from inV0 to ray origin
Vec3 s = inOrigin - inV0;
// Calculate u parameter
Vec3 u = Vec3::sReplicate(s.Dot(p)) / det;
// Prepare to test v parameter
Vec3 q = s.Cross(e1);
// Calculate v parameter
Vec3 v = Vec3::sReplicate(inDirection.Dot(q)) / det;
// Get intersection point
Vec3 t = Vec3::sReplicate(e2.Dot(q)) / det;
// Check if there is an intersection
UVec4 no_intersection =
UVec4::sOr
(
UVec4::sOr
(
UVec4::sOr
(
det_near_zero,
Vec3::sLess(u, zero)
),
UVec4::sOr
(
Vec3::sLess(v, zero),
Vec3::sGreater(u + v, one)
)
),
Vec3::sLess(t, zero)
);
// Select intersection point or FLT_MAX based on if there is an intersection or not
return Vec3::sSelect(t, Vec3::sReplicate(FLT_MAX), no_intersection).GetX();
}
/// Intersect ray with 4 triangles in SOA format, returns 4 vector of closest points or FLT_MAX if no hit (uses bit tricks to do less divisions)
JPH_INLINE Vec4 RayTriangle4(Vec3Arg inOrigin, Vec3Arg inDirection, Vec4Arg inV0X, Vec4Arg inV0Y, Vec4Arg inV0Z, Vec4Arg inV1X, Vec4Arg inV1Y, Vec4Arg inV1Z, Vec4Arg inV2X, Vec4Arg inV2Y, Vec4Arg inV2Z)
{
// Epsilon
Vec4 epsilon = Vec4::sReplicate(1.0e-12f);
// Zero
Vec4 zero = Vec4::sZero();
// Find vectors for two edges sharing inV0
Vec4 e1x = inV1X - inV0X;
Vec4 e1y = inV1Y - inV0Y;
Vec4 e1z = inV1Z - inV0Z;
Vec4 e2x = inV2X - inV0X;
Vec4 e2y = inV2Y - inV0Y;
Vec4 e2z = inV2Z - inV0Z;
// Get direction vector components
Vec4 dx = inDirection.SplatX();
Vec4 dy = inDirection.SplatY();
Vec4 dz = inDirection.SplatZ();
// Begin calculating determinant - also used to calculate u parameter
Vec4 px = dy * e2z - dz * e2y;
Vec4 py = dz * e2x - dx * e2z;
Vec4 pz = dx * e2y - dy * e2x;
// if determinant is near zero, ray lies in plane of triangle
Vec4 det = e1x * px + e1y * py + e1z * pz;
// Get sign bit for determinant and make positive
Vec4 det_sign = Vec4::sAnd(det, UVec4::sReplicate(0x80000000).ReinterpretAsFloat());
det = Vec4::sXor(det, det_sign);
// Check which determinants are near zero
UVec4 det_near_zero = Vec4::sLess(det, epsilon);
// Set components of the determinant to 1 that are near zero to avoid dividing by zero
det = Vec4::sSelect(det, Vec4::sOne(), det_near_zero);
// Calculate distance from inV0 to ray origin
Vec4 sx = inOrigin.SplatX() - inV0X;
Vec4 sy = inOrigin.SplatY() - inV0Y;
Vec4 sz = inOrigin.SplatZ() - inV0Z;
// Calculate u parameter and flip sign if determinant was negative
Vec4 u = Vec4::sXor(sx * px + sy * py + sz * pz, det_sign);
// Prepare to test v parameter
Vec4 qx = sy * e1z - sz * e1y;
Vec4 qy = sz * e1x - sx * e1z;
Vec4 qz = sx * e1y - sy * e1x;
// Calculate v parameter and flip sign if determinant was negative
Vec4 v = Vec4::sXor(dx * qx + dy * qy + dz * qz, det_sign);
// Get intersection point and flip sign if determinant was negative
Vec4 t = Vec4::sXor(e2x * qx + e2y * qy + e2z * qz, det_sign);
// Check if there is an intersection
UVec4 no_intersection =
UVec4::sOr
(
UVec4::sOr
(
UVec4::sOr
(
det_near_zero,
Vec4::sLess(u, zero)
),
UVec4::sOr
(
Vec4::sLess(v, zero),
Vec4::sGreater(u + v, det)
)
),
Vec4::sLess(t, zero)
);
// Select intersection point or FLT_MAX based on if there is an intersection or not
return Vec4::sSelect(t / det, Vec4::sReplicate(FLT_MAX), no_intersection);
}
JPH_NAMESPACE_END

View File

@@ -0,0 +1,72 @@
// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#pragma once
#include <Jolt/Geometry/AABox.h>
JPH_NAMESPACE_BEGIN
class [[nodiscard]] Sphere
{
public:
JPH_OVERRIDE_NEW_DELETE
/// Constructor
inline Sphere() = default;
inline Sphere(const Float3 &inCenter, float inRadius) : mCenter(inCenter), mRadius(inRadius) { }
inline Sphere(Vec3Arg inCenter, float inRadius) : mRadius(inRadius) { inCenter.StoreFloat3(&mCenter); }
/// Calculate the support vector for this convex shape.
inline Vec3 GetSupport(Vec3Arg inDirection) const
{
float length = inDirection.Length();
return length > 0.0f ? Vec3::sLoadFloat3Unsafe(mCenter) + (mRadius/ length) * inDirection : Vec3::sLoadFloat3Unsafe(mCenter);
}
// Properties
inline Vec3 GetCenter() const { return Vec3::sLoadFloat3Unsafe(mCenter); }
inline float GetRadius() const { return mRadius; }
/// Test if two spheres overlap
inline bool Overlaps(const Sphere &inB) const
{
return (Vec3::sLoadFloat3Unsafe(mCenter) - Vec3::sLoadFloat3Unsafe(inB.mCenter)).LengthSq() <= Square(mRadius + inB.mRadius);
}
/// Check if this sphere overlaps with a box
inline bool Overlaps(const AABox &inOther) const
{
return inOther.GetSqDistanceTo(GetCenter()) <= Square(mRadius);
}
/// Create the minimal sphere that encapsulates this sphere and inPoint
inline void EncapsulatePoint(Vec3Arg inPoint)
{
// Calculate distance between point and center
Vec3 center = GetCenter();
Vec3 d_vec = inPoint - center;
float d_sq = d_vec.LengthSq();
if (d_sq > Square(mRadius))
{
// It is further away than radius, we need to widen the sphere
// The diameter of the new sphere is radius + d, so the new radius is half of that
float d = sqrt(d_sq);
float radius = 0.5f * (mRadius + d);
// The center needs to shift by new radius - old radius in the direction of d
center += (radius - mRadius) / d * d_vec;
// Store new sphere
center.StoreFloat3(&mCenter);
mRadius = radius;
}
}
private:
Float3 mCenter;
float mRadius;
};
JPH_NAMESPACE_END

View File

@@ -0,0 +1,34 @@
// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#pragma once
JPH_NAMESPACE_BEGIN
/// A simple triangle and its material
class Triangle
{
public:
JPH_OVERRIDE_NEW_DELETE
/// Constructor
Triangle() = default;
Triangle(const Float3 &inV1, const Float3 &inV2, const Float3 &inV3, uint32 inMaterialIndex = 0, uint32 inUserData = 0) : mV { inV1, inV2, inV3 }, mMaterialIndex(inMaterialIndex), mUserData(inUserData) { }
Triangle(Vec3Arg inV1, Vec3Arg inV2, Vec3Arg inV3, uint32 inMaterialIndex = 0, uint32 inUserData = 0) : mMaterialIndex(inMaterialIndex), mUserData(inUserData) { inV1.StoreFloat3(&mV[0]); inV2.StoreFloat3(&mV[1]); inV3.StoreFloat3(&mV[2]); }
/// Get center of triangle
Vec3 GetCentroid() const
{
return (Vec3::sLoadFloat3Unsafe(mV[0]) + Vec3::sLoadFloat3Unsafe(mV[1]) + Vec3::sLoadFloat3Unsafe(mV[2])) * (1.0f / 3.0f);
}
/// Vertices
Float3 mV[3];
uint32 mMaterialIndex = 0; ///< Follows mV[3] so that we can read mV as 4 vectors
uint32 mUserData = 0; ///< User data that can be used for anything by the application, e.g. for tracking the original index of the triangle
};
using TriangleList = Array<Triangle>;
JPH_NAMESPACE_END