initial commit, 4.5 stable
Some checks failed
🔗 GHA / 📊 Static checks (push) Has been cancelled
🔗 GHA / 🤖 Android (push) Has been cancelled
🔗 GHA / 🍏 iOS (push) Has been cancelled
🔗 GHA / 🐧 Linux (push) Has been cancelled
🔗 GHA / 🍎 macOS (push) Has been cancelled
🔗 GHA / 🏁 Windows (push) Has been cancelled
🔗 GHA / 🌐 Web (push) Has been cancelled
Some checks failed
🔗 GHA / 📊 Static checks (push) Has been cancelled
🔗 GHA / 🤖 Android (push) Has been cancelled
🔗 GHA / 🍏 iOS (push) Has been cancelled
🔗 GHA / 🐧 Linux (push) Has been cancelled
🔗 GHA / 🍎 macOS (push) Has been cancelled
🔗 GHA / 🏁 Windows (push) Has been cancelled
🔗 GHA / 🌐 Web (push) Has been cancelled
This commit is contained in:
208
thirdparty/jolt_physics/Jolt/Math/HalfFloat.h
vendored
Normal file
208
thirdparty/jolt_physics/Jolt/Math/HalfFloat.h
vendored
Normal file
@@ -0,0 +1,208 @@
|
||||
// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
|
||||
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
|
||||
// SPDX-License-Identifier: MIT
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <Jolt/Math/Vec4.h>
|
||||
#include <Jolt/Core/FPException.h>
|
||||
|
||||
JPH_NAMESPACE_BEGIN
|
||||
|
||||
using HalfFloat = uint16;
|
||||
|
||||
// Define half float constant values
|
||||
static constexpr HalfFloat HALF_FLT_MAX = 0x7bff;
|
||||
static constexpr HalfFloat HALF_FLT_MAX_NEGATIVE = 0xfbff;
|
||||
static constexpr HalfFloat HALF_FLT_INF = 0x7c00;
|
||||
static constexpr HalfFloat HALF_FLT_INF_NEGATIVE = 0xfc00;
|
||||
static constexpr HalfFloat HALF_FLT_NANQ = 0x7e00;
|
||||
static constexpr HalfFloat HALF_FLT_NANQ_NEGATIVE = 0xfe00;
|
||||
|
||||
namespace HalfFloatConversion {
|
||||
|
||||
// Layout of a float
|
||||
static constexpr int FLOAT_SIGN_POS = 31;
|
||||
static constexpr int FLOAT_EXPONENT_POS = 23;
|
||||
static constexpr int FLOAT_EXPONENT_BITS = 8;
|
||||
static constexpr int FLOAT_EXPONENT_MASK = (1 << FLOAT_EXPONENT_BITS) - 1;
|
||||
static constexpr int FLOAT_EXPONENT_BIAS = 127;
|
||||
static constexpr int FLOAT_MANTISSA_BITS = 23;
|
||||
static constexpr int FLOAT_MANTISSA_MASK = (1 << FLOAT_MANTISSA_BITS) - 1;
|
||||
static constexpr int FLOAT_EXPONENT_AND_MANTISSA_MASK = FLOAT_MANTISSA_MASK + (FLOAT_EXPONENT_MASK << FLOAT_EXPONENT_POS);
|
||||
|
||||
// Layout of half float
|
||||
static constexpr int HALF_FLT_SIGN_POS = 15;
|
||||
static constexpr int HALF_FLT_EXPONENT_POS = 10;
|
||||
static constexpr int HALF_FLT_EXPONENT_BITS = 5;
|
||||
static constexpr int HALF_FLT_EXPONENT_MASK = (1 << HALF_FLT_EXPONENT_BITS) - 1;
|
||||
static constexpr int HALF_FLT_EXPONENT_BIAS = 15;
|
||||
static constexpr int HALF_FLT_MANTISSA_BITS = 10;
|
||||
static constexpr int HALF_FLT_MANTISSA_MASK = (1 << HALF_FLT_MANTISSA_BITS) - 1;
|
||||
static constexpr int HALF_FLT_EXPONENT_AND_MANTISSA_MASK = HALF_FLT_MANTISSA_MASK + (HALF_FLT_EXPONENT_MASK << HALF_FLT_EXPONENT_POS);
|
||||
|
||||
/// Define half-float rounding modes
|
||||
enum ERoundingMode
|
||||
{
|
||||
ROUND_TO_NEG_INF, ///< Round to negative infinity
|
||||
ROUND_TO_POS_INF, ///< Round to positive infinity
|
||||
ROUND_TO_NEAREST, ///< Round to nearest value
|
||||
};
|
||||
|
||||
/// Convert a float (32-bits) to a half float (16-bits), fallback version when no intrinsics available
|
||||
template <int RoundingMode>
|
||||
inline HalfFloat FromFloatFallback(float inV)
|
||||
{
|
||||
// Reinterpret the float as an uint32
|
||||
uint32 value = BitCast<uint32>(inV);
|
||||
|
||||
// Extract exponent
|
||||
uint32 exponent = (value >> FLOAT_EXPONENT_POS) & FLOAT_EXPONENT_MASK;
|
||||
|
||||
// Extract mantissa
|
||||
uint32 mantissa = value & FLOAT_MANTISSA_MASK;
|
||||
|
||||
// Extract the sign and move it into the right spot for the half float (so we can just or it in at the end)
|
||||
HalfFloat hf_sign = HalfFloat(value >> (FLOAT_SIGN_POS - HALF_FLT_SIGN_POS)) & (1 << HALF_FLT_SIGN_POS);
|
||||
|
||||
// Check NaN or INF
|
||||
if (exponent == FLOAT_EXPONENT_MASK) // NaN or INF
|
||||
return hf_sign | (mantissa == 0? HALF_FLT_INF : HALF_FLT_NANQ);
|
||||
|
||||
// Rebias the exponent for half floats
|
||||
int rebiased_exponent = int(exponent) - FLOAT_EXPONENT_BIAS + HALF_FLT_EXPONENT_BIAS;
|
||||
|
||||
// Check overflow to infinity
|
||||
if (rebiased_exponent >= HALF_FLT_EXPONENT_MASK)
|
||||
{
|
||||
bool round_up = RoundingMode == ROUND_TO_NEAREST || (hf_sign == 0) == (RoundingMode == ROUND_TO_POS_INF);
|
||||
return hf_sign | (round_up? HALF_FLT_INF : HALF_FLT_MAX);
|
||||
}
|
||||
|
||||
// Check underflow to zero
|
||||
if (rebiased_exponent < -HALF_FLT_MANTISSA_BITS)
|
||||
{
|
||||
bool round_up = RoundingMode != ROUND_TO_NEAREST && (hf_sign == 0) == (RoundingMode == ROUND_TO_POS_INF) && (value & FLOAT_EXPONENT_AND_MANTISSA_MASK) != 0;
|
||||
return hf_sign | (round_up? 1 : 0);
|
||||
}
|
||||
|
||||
HalfFloat hf_exponent;
|
||||
int shift;
|
||||
if (rebiased_exponent <= 0)
|
||||
{
|
||||
// Underflow to denormalized number
|
||||
hf_exponent = 0;
|
||||
mantissa |= 1 << FLOAT_MANTISSA_BITS; // Add the implicit 1 bit to the mantissa
|
||||
shift = FLOAT_MANTISSA_BITS - HALF_FLT_MANTISSA_BITS + 1 - rebiased_exponent;
|
||||
}
|
||||
else
|
||||
{
|
||||
// Normal half float
|
||||
hf_exponent = HalfFloat(rebiased_exponent << HALF_FLT_EXPONENT_POS);
|
||||
shift = FLOAT_MANTISSA_BITS - HALF_FLT_MANTISSA_BITS;
|
||||
}
|
||||
|
||||
// Compose the half float
|
||||
HalfFloat hf_mantissa = HalfFloat(mantissa >> shift);
|
||||
HalfFloat hf = hf_sign | hf_exponent | hf_mantissa;
|
||||
|
||||
// Calculate the remaining bits that we're discarding
|
||||
uint remainder = mantissa & ((1 << shift) - 1);
|
||||
|
||||
if constexpr (RoundingMode == ROUND_TO_NEAREST)
|
||||
{
|
||||
// Round to nearest
|
||||
uint round_threshold = 1 << (shift - 1);
|
||||
if (remainder > round_threshold // Above threshold, we must always round
|
||||
|| (remainder == round_threshold && (hf_mantissa & 1))) // When equal, round to nearest even
|
||||
hf++; // May overflow to infinity
|
||||
}
|
||||
else
|
||||
{
|
||||
// Round up or down (truncate) depending on the rounding mode
|
||||
bool round_up = (hf_sign == 0) == (RoundingMode == ROUND_TO_POS_INF) && remainder != 0;
|
||||
if (round_up)
|
||||
hf++; // May overflow to infinity
|
||||
}
|
||||
|
||||
return hf;
|
||||
}
|
||||
|
||||
/// Convert a float (32-bits) to a half float (16-bits)
|
||||
template <int RoundingMode>
|
||||
JPH_INLINE HalfFloat FromFloat(float inV)
|
||||
{
|
||||
#ifdef JPH_USE_F16C
|
||||
FPExceptionDisableOverflow disable_overflow;
|
||||
JPH_UNUSED(disable_overflow);
|
||||
|
||||
union
|
||||
{
|
||||
__m128i u128;
|
||||
HalfFloat u16[8];
|
||||
} hf;
|
||||
__m128 val = _mm_load_ss(&inV);
|
||||
switch (RoundingMode)
|
||||
{
|
||||
case ROUND_TO_NEG_INF:
|
||||
hf.u128 = _mm_cvtps_ph(val, _MM_FROUND_TO_NEG_INF);
|
||||
break;
|
||||
case ROUND_TO_POS_INF:
|
||||
hf.u128 = _mm_cvtps_ph(val, _MM_FROUND_TO_POS_INF);
|
||||
break;
|
||||
case ROUND_TO_NEAREST:
|
||||
hf.u128 = _mm_cvtps_ph(val, _MM_FROUND_TO_NEAREST_INT);
|
||||
break;
|
||||
}
|
||||
return hf.u16[0];
|
||||
#else
|
||||
return FromFloatFallback<RoundingMode>(inV);
|
||||
#endif
|
||||
}
|
||||
|
||||
/// Convert 4 half floats (lower 64 bits) to floats, fallback version when no intrinsics available
|
||||
inline Vec4 ToFloatFallback(UVec4Arg inValue)
|
||||
{
|
||||
// Unpack half floats to 4 uint32's
|
||||
UVec4 value = inValue.Expand4Uint16Lo();
|
||||
|
||||
// Normal half float path, extract the exponent and mantissa, shift them into place and update the exponent bias
|
||||
UVec4 exponent_mantissa = UVec4::sAnd(value, UVec4::sReplicate(HALF_FLT_EXPONENT_AND_MANTISSA_MASK)).LogicalShiftLeft<FLOAT_EXPONENT_POS - HALF_FLT_EXPONENT_POS>() + UVec4::sReplicate((FLOAT_EXPONENT_BIAS - HALF_FLT_EXPONENT_BIAS) << FLOAT_EXPONENT_POS);
|
||||
|
||||
// Denormalized half float path, renormalize the float
|
||||
UVec4 exponent_mantissa_denormalized = ((exponent_mantissa + UVec4::sReplicate(1 << FLOAT_EXPONENT_POS)).ReinterpretAsFloat() - UVec4::sReplicate((FLOAT_EXPONENT_BIAS - HALF_FLT_EXPONENT_BIAS + 1) << FLOAT_EXPONENT_POS).ReinterpretAsFloat()).ReinterpretAsInt();
|
||||
|
||||
// NaN / INF path, set all exponent bits
|
||||
UVec4 exponent_mantissa_nan_inf = UVec4::sOr(exponent_mantissa, UVec4::sReplicate(FLOAT_EXPONENT_MASK << FLOAT_EXPONENT_POS));
|
||||
|
||||
// Get the exponent to determine which of the paths we should take
|
||||
UVec4 exponent_mask = UVec4::sReplicate(HALF_FLT_EXPONENT_MASK << HALF_FLT_EXPONENT_POS);
|
||||
UVec4 exponent = UVec4::sAnd(value, exponent_mask);
|
||||
UVec4 is_denormalized = UVec4::sEquals(exponent, UVec4::sZero());
|
||||
UVec4 is_nan_inf = UVec4::sEquals(exponent, exponent_mask);
|
||||
|
||||
// Select the correct result
|
||||
UVec4 result_exponent_mantissa = UVec4::sSelect(UVec4::sSelect(exponent_mantissa, exponent_mantissa_nan_inf, is_nan_inf), exponent_mantissa_denormalized, is_denormalized);
|
||||
|
||||
// Extract the sign bit and shift it to the left
|
||||
UVec4 sign = UVec4::sAnd(value, UVec4::sReplicate(1 << HALF_FLT_SIGN_POS)).LogicalShiftLeft<FLOAT_SIGN_POS - HALF_FLT_SIGN_POS>();
|
||||
|
||||
// Construct the float
|
||||
return UVec4::sOr(sign, result_exponent_mantissa).ReinterpretAsFloat();
|
||||
}
|
||||
|
||||
/// Convert 4 half floats (lower 64 bits) to floats
|
||||
JPH_INLINE Vec4 ToFloat(UVec4Arg inValue)
|
||||
{
|
||||
#if defined(JPH_USE_F16C)
|
||||
return _mm_cvtph_ps(inValue.mValue);
|
||||
#elif defined(JPH_USE_NEON)
|
||||
return vcvt_f32_f16(vreinterpret_f16_u32(vget_low_u32(inValue.mValue)));
|
||||
#else
|
||||
return ToFloatFallback(inValue);
|
||||
#endif
|
||||
}
|
||||
|
||||
} // HalfFloatConversion
|
||||
|
||||
JPH_NAMESPACE_END
|
Reference in New Issue
Block a user