initial commit, 4.5 stable
Some checks failed
🔗 GHA / 📊 Static checks (push) Has been cancelled
🔗 GHA / 🤖 Android (push) Has been cancelled
🔗 GHA / 🍏 iOS (push) Has been cancelled
🔗 GHA / 🐧 Linux (push) Has been cancelled
🔗 GHA / 🍎 macOS (push) Has been cancelled
🔗 GHA / 🏁 Windows (push) Has been cancelled
🔗 GHA / 🌐 Web (push) Has been cancelled
Some checks failed
🔗 GHA / 📊 Static checks (push) Has been cancelled
🔗 GHA / 🤖 Android (push) Has been cancelled
🔗 GHA / 🍏 iOS (push) Has been cancelled
🔗 GHA / 🐧 Linux (push) Has been cancelled
🔗 GHA / 🍎 macOS (push) Has been cancelled
🔗 GHA / 🏁 Windows (push) Has been cancelled
🔗 GHA / 🌐 Web (push) Has been cancelled
This commit is contained in:
418
thirdparty/jolt_physics/Jolt/Physics/Collision/Shape/CylinderShape.cpp
vendored
Normal file
418
thirdparty/jolt_physics/Jolt/Physics/Collision/Shape/CylinderShape.cpp
vendored
Normal file
@@ -0,0 +1,418 @@
|
||||
// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
|
||||
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
|
||||
// SPDX-License-Identifier: MIT
|
||||
|
||||
#include <Jolt/Jolt.h>
|
||||
|
||||
#include <Jolt/Physics/Collision/Shape/CylinderShape.h>
|
||||
#include <Jolt/Physics/Collision/Shape/ScaleHelpers.h>
|
||||
#include <Jolt/Physics/Collision/Shape/GetTrianglesContext.h>
|
||||
#include <Jolt/Physics/Collision/RayCast.h>
|
||||
#include <Jolt/Physics/Collision/CastResult.h>
|
||||
#include <Jolt/Physics/Collision/CollidePointResult.h>
|
||||
#include <Jolt/Physics/Collision/TransformedShape.h>
|
||||
#include <Jolt/Physics/Collision/CollideSoftBodyVertexIterator.h>
|
||||
#include <Jolt/Geometry/RayCylinder.h>
|
||||
#include <Jolt/ObjectStream/TypeDeclarations.h>
|
||||
#include <Jolt/Core/StreamIn.h>
|
||||
#include <Jolt/Core/StreamOut.h>
|
||||
#ifdef JPH_DEBUG_RENDERER
|
||||
#include <Jolt/Renderer/DebugRenderer.h>
|
||||
#endif // JPH_DEBUG_RENDERER
|
||||
|
||||
JPH_NAMESPACE_BEGIN
|
||||
|
||||
JPH_IMPLEMENT_SERIALIZABLE_VIRTUAL(CylinderShapeSettings)
|
||||
{
|
||||
JPH_ADD_BASE_CLASS(CylinderShapeSettings, ConvexShapeSettings)
|
||||
|
||||
JPH_ADD_ATTRIBUTE(CylinderShapeSettings, mHalfHeight)
|
||||
JPH_ADD_ATTRIBUTE(CylinderShapeSettings, mRadius)
|
||||
JPH_ADD_ATTRIBUTE(CylinderShapeSettings, mConvexRadius)
|
||||
}
|
||||
|
||||
// Approximation of top face with 8 vertices
|
||||
static const Vec3 cCylinderTopFace[] =
|
||||
{
|
||||
Vec3(0.0f, 1.0f, 1.0f),
|
||||
Vec3(0.707106769f, 1.0f, 0.707106769f),
|
||||
Vec3(1.0f, 1.0f, 0.0f),
|
||||
Vec3(0.707106769f, 1.0f, -0.707106769f),
|
||||
Vec3(-0.0f, 1.0f, -1.0f),
|
||||
Vec3(-0.707106769f, 1.0f, -0.707106769f),
|
||||
Vec3(-1.0f, 1.0f, 0.0f),
|
||||
Vec3(-0.707106769f, 1.0f, 0.707106769f)
|
||||
};
|
||||
|
||||
static const StaticArray<Vec3, 96> sUnitCylinderTriangles = []() {
|
||||
StaticArray<Vec3, 96> verts;
|
||||
|
||||
const Vec3 bottom_offset(0.0f, -2.0f, 0.0f);
|
||||
|
||||
int num_verts = sizeof(cCylinderTopFace) / sizeof(Vec3);
|
||||
for (int i = 0; i < num_verts; ++i)
|
||||
{
|
||||
Vec3 t1 = cCylinderTopFace[i];
|
||||
Vec3 t2 = cCylinderTopFace[(i + 1) % num_verts];
|
||||
Vec3 b1 = cCylinderTopFace[i] + bottom_offset;
|
||||
Vec3 b2 = cCylinderTopFace[(i + 1) % num_verts] + bottom_offset;
|
||||
|
||||
// Top
|
||||
verts.emplace_back(0.0f, 1.0f, 0.0f);
|
||||
verts.push_back(t1);
|
||||
verts.push_back(t2);
|
||||
|
||||
// Bottom
|
||||
verts.emplace_back(0.0f, -1.0f, 0.0f);
|
||||
verts.push_back(b2);
|
||||
verts.push_back(b1);
|
||||
|
||||
// Side
|
||||
verts.push_back(t1);
|
||||
verts.push_back(b1);
|
||||
verts.push_back(t2);
|
||||
|
||||
verts.push_back(t2);
|
||||
verts.push_back(b1);
|
||||
verts.push_back(b2);
|
||||
}
|
||||
|
||||
return verts;
|
||||
}();
|
||||
|
||||
ShapeSettings::ShapeResult CylinderShapeSettings::Create() const
|
||||
{
|
||||
if (mCachedResult.IsEmpty())
|
||||
Ref<Shape> shape = new CylinderShape(*this, mCachedResult);
|
||||
return mCachedResult;
|
||||
}
|
||||
|
||||
CylinderShape::CylinderShape(const CylinderShapeSettings &inSettings, ShapeResult &outResult) :
|
||||
ConvexShape(EShapeSubType::Cylinder, inSettings, outResult),
|
||||
mHalfHeight(inSettings.mHalfHeight),
|
||||
mRadius(inSettings.mRadius),
|
||||
mConvexRadius(inSettings.mConvexRadius)
|
||||
{
|
||||
if (inSettings.mHalfHeight < inSettings.mConvexRadius)
|
||||
{
|
||||
outResult.SetError("Invalid height");
|
||||
return;
|
||||
}
|
||||
|
||||
if (inSettings.mRadius < inSettings.mConvexRadius)
|
||||
{
|
||||
outResult.SetError("Invalid radius");
|
||||
return;
|
||||
}
|
||||
|
||||
if (inSettings.mConvexRadius < 0.0f)
|
||||
{
|
||||
outResult.SetError("Invalid convex radius");
|
||||
return;
|
||||
}
|
||||
|
||||
outResult.Set(this);
|
||||
}
|
||||
|
||||
CylinderShape::CylinderShape(float inHalfHeight, float inRadius, float inConvexRadius, const PhysicsMaterial *inMaterial) :
|
||||
ConvexShape(EShapeSubType::Cylinder, inMaterial),
|
||||
mHalfHeight(inHalfHeight),
|
||||
mRadius(inRadius),
|
||||
mConvexRadius(inConvexRadius)
|
||||
{
|
||||
JPH_ASSERT(inHalfHeight >= inConvexRadius);
|
||||
JPH_ASSERT(inRadius >= inConvexRadius);
|
||||
JPH_ASSERT(inConvexRadius >= 0.0f);
|
||||
}
|
||||
|
||||
class CylinderShape::Cylinder final : public Support
|
||||
{
|
||||
public:
|
||||
Cylinder(float inHalfHeight, float inRadius, float inConvexRadius) :
|
||||
mHalfHeight(inHalfHeight),
|
||||
mRadius(inRadius),
|
||||
mConvexRadius(inConvexRadius)
|
||||
{
|
||||
static_assert(sizeof(Cylinder) <= sizeof(SupportBuffer), "Buffer size too small");
|
||||
JPH_ASSERT(IsAligned(this, alignof(Cylinder)));
|
||||
}
|
||||
|
||||
virtual Vec3 GetSupport(Vec3Arg inDirection) const override
|
||||
{
|
||||
// Support mapping, taken from:
|
||||
// A Fast and Robust GJK Implementation for Collision Detection of Convex Objects - Gino van den Bergen
|
||||
// page 8
|
||||
float x = inDirection.GetX(), y = inDirection.GetY(), z = inDirection.GetZ();
|
||||
float o = sqrt(Square(x) + Square(z));
|
||||
if (o > 0.0f)
|
||||
return Vec3((mRadius * x) / o, Sign(y) * mHalfHeight, (mRadius * z) / o);
|
||||
else
|
||||
return Vec3(0, Sign(y) * mHalfHeight, 0);
|
||||
}
|
||||
|
||||
virtual float GetConvexRadius() const override
|
||||
{
|
||||
return mConvexRadius;
|
||||
}
|
||||
|
||||
private:
|
||||
float mHalfHeight;
|
||||
float mRadius;
|
||||
float mConvexRadius;
|
||||
};
|
||||
|
||||
const ConvexShape::Support *CylinderShape::GetSupportFunction(ESupportMode inMode, SupportBuffer &inBuffer, Vec3Arg inScale) const
|
||||
{
|
||||
JPH_ASSERT(IsValidScale(inScale));
|
||||
|
||||
// Get scaled cylinder
|
||||
Vec3 abs_scale = inScale.Abs();
|
||||
float scale_xz = abs_scale.GetX();
|
||||
float scale_y = abs_scale.GetY();
|
||||
float scaled_half_height = scale_y * mHalfHeight;
|
||||
float scaled_radius = scale_xz * mRadius;
|
||||
float scaled_convex_radius = ScaleHelpers::ScaleConvexRadius(mConvexRadius, inScale);
|
||||
|
||||
switch (inMode)
|
||||
{
|
||||
case ESupportMode::IncludeConvexRadius:
|
||||
case ESupportMode::Default:
|
||||
return new (&inBuffer) Cylinder(scaled_half_height, scaled_radius, 0.0f);
|
||||
|
||||
case ESupportMode::ExcludeConvexRadius:
|
||||
return new (&inBuffer) Cylinder(scaled_half_height - scaled_convex_radius, scaled_radius - scaled_convex_radius, scaled_convex_radius);
|
||||
}
|
||||
|
||||
JPH_ASSERT(false);
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
void CylinderShape::GetSupportingFace(const SubShapeID &inSubShapeID, Vec3Arg inDirection, Vec3Arg inScale, Mat44Arg inCenterOfMassTransform, SupportingFace &outVertices) const
|
||||
{
|
||||
JPH_ASSERT(inSubShapeID.IsEmpty(), "Invalid subshape ID");
|
||||
JPH_ASSERT(IsValidScale(inScale));
|
||||
|
||||
// Get scaled cylinder
|
||||
Vec3 abs_scale = inScale.Abs();
|
||||
float scale_xz = abs_scale.GetX();
|
||||
float scale_y = abs_scale.GetY();
|
||||
float scaled_half_height = scale_y * mHalfHeight;
|
||||
float scaled_radius = scale_xz * mRadius;
|
||||
|
||||
float x = inDirection.GetX(), y = inDirection.GetY(), z = inDirection.GetZ();
|
||||
float xz_sq = Square(x) + Square(z);
|
||||
float y_sq = Square(y);
|
||||
|
||||
// Check which component is bigger
|
||||
if (xz_sq > y_sq)
|
||||
{
|
||||
// Hitting side
|
||||
float f = -scaled_radius / sqrt(xz_sq);
|
||||
float vx = x * f;
|
||||
float vz = z * f;
|
||||
outVertices.push_back(inCenterOfMassTransform * Vec3(vx, scaled_half_height, vz));
|
||||
outVertices.push_back(inCenterOfMassTransform * Vec3(vx, -scaled_half_height, vz));
|
||||
}
|
||||
else
|
||||
{
|
||||
// Hitting top or bottom
|
||||
|
||||
// When the inDirection is more than 5 degrees from vertical, align the vertices so that 1 of the vertices
|
||||
// points towards inDirection in the XZ plane. This ensures that we always have a vertex towards max penetration depth.
|
||||
Mat44 transform = inCenterOfMassTransform;
|
||||
if (xz_sq > 0.00765427f * y_sq)
|
||||
{
|
||||
Vec4 base_x = Vec4(x, 0, z, 0) / sqrt(xz_sq);
|
||||
Vec4 base_z = base_x.Swizzle<SWIZZLE_Z, SWIZZLE_Y, SWIZZLE_X, SWIZZLE_W>() * Vec4(-1, 0, 1, 0);
|
||||
transform = transform * Mat44(base_x, Vec4(0, 1, 0, 0), base_z, Vec4(0, 0, 0, 1));
|
||||
}
|
||||
|
||||
// Adjust for scale and height
|
||||
Vec3 multiplier = y < 0.0f? Vec3(scaled_radius, scaled_half_height, scaled_radius) : Vec3(-scaled_radius, -scaled_half_height, scaled_radius);
|
||||
transform = transform.PreScaled(multiplier);
|
||||
|
||||
for (const Vec3 &v : cCylinderTopFace)
|
||||
outVertices.push_back(transform * v);
|
||||
}
|
||||
}
|
||||
|
||||
MassProperties CylinderShape::GetMassProperties() const
|
||||
{
|
||||
MassProperties p;
|
||||
|
||||
// Mass is surface of circle * height
|
||||
float radius_sq = Square(mRadius);
|
||||
float height = 2.0f * mHalfHeight;
|
||||
p.mMass = JPH_PI * radius_sq * height * GetDensity();
|
||||
|
||||
// Inertia according to https://en.wikipedia.org/wiki/List_of_moments_of_inertia:
|
||||
float inertia_y = radius_sq * p.mMass * 0.5f;
|
||||
float inertia_x = inertia_y * 0.5f + p.mMass * height * height / 12.0f;
|
||||
float inertia_z = inertia_x;
|
||||
|
||||
// Set inertia
|
||||
p.mInertia = Mat44::sScale(Vec3(inertia_x, inertia_y, inertia_z));
|
||||
|
||||
return p;
|
||||
}
|
||||
|
||||
Vec3 CylinderShape::GetSurfaceNormal(const SubShapeID &inSubShapeID, Vec3Arg inLocalSurfacePosition) const
|
||||
{
|
||||
JPH_ASSERT(inSubShapeID.IsEmpty(), "Invalid subshape ID");
|
||||
|
||||
// Calculate distance to infinite cylinder surface
|
||||
Vec3 local_surface_position_xz(inLocalSurfacePosition.GetX(), 0, inLocalSurfacePosition.GetZ());
|
||||
float local_surface_position_xz_len = local_surface_position_xz.Length();
|
||||
float distance_to_curved_surface = abs(local_surface_position_xz_len - mRadius);
|
||||
|
||||
// Calculate distance to top or bottom plane
|
||||
float distance_to_top_or_bottom = abs(abs(inLocalSurfacePosition.GetY()) - mHalfHeight);
|
||||
|
||||
// Return normal according to closest surface
|
||||
if (distance_to_curved_surface < distance_to_top_or_bottom)
|
||||
return local_surface_position_xz / local_surface_position_xz_len;
|
||||
else
|
||||
return inLocalSurfacePosition.GetY() > 0.0f? Vec3::sAxisY() : -Vec3::sAxisY();
|
||||
}
|
||||
|
||||
AABox CylinderShape::GetLocalBounds() const
|
||||
{
|
||||
Vec3 extent = Vec3(mRadius, mHalfHeight, mRadius);
|
||||
return AABox(-extent, extent);
|
||||
}
|
||||
|
||||
#ifdef JPH_DEBUG_RENDERER
|
||||
void CylinderShape::Draw(DebugRenderer *inRenderer, RMat44Arg inCenterOfMassTransform, Vec3Arg inScale, ColorArg inColor, bool inUseMaterialColors, bool inDrawWireframe) const
|
||||
{
|
||||
DebugRenderer::EDrawMode draw_mode = inDrawWireframe? DebugRenderer::EDrawMode::Wireframe : DebugRenderer::EDrawMode::Solid;
|
||||
inRenderer->DrawCylinder(inCenterOfMassTransform * Mat44::sScale(inScale.Abs()), mHalfHeight, mRadius, inUseMaterialColors? GetMaterial()->GetDebugColor() : inColor, DebugRenderer::ECastShadow::On, draw_mode);
|
||||
}
|
||||
#endif // JPH_DEBUG_RENDERER
|
||||
|
||||
bool CylinderShape::CastRay(const RayCast &inRay, const SubShapeIDCreator &inSubShapeIDCreator, RayCastResult &ioHit) const
|
||||
{
|
||||
// Test ray against capsule
|
||||
float fraction = RayCylinder(inRay.mOrigin, inRay.mDirection, mHalfHeight, mRadius);
|
||||
if (fraction < ioHit.mFraction)
|
||||
{
|
||||
ioHit.mFraction = fraction;
|
||||
ioHit.mSubShapeID2 = inSubShapeIDCreator.GetID();
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
void CylinderShape::CollidePoint(Vec3Arg inPoint, const SubShapeIDCreator &inSubShapeIDCreator, CollidePointCollector &ioCollector, const ShapeFilter &inShapeFilter) const
|
||||
{
|
||||
// Test shape filter
|
||||
if (!inShapeFilter.ShouldCollide(this, inSubShapeIDCreator.GetID()))
|
||||
return;
|
||||
|
||||
// Check if the point is in the cylinder
|
||||
if (abs(inPoint.GetY()) <= mHalfHeight // Within the height
|
||||
&& Square(inPoint.GetX()) + Square(inPoint.GetZ()) <= Square(mRadius)) // Within the radius
|
||||
ioCollector.AddHit({ TransformedShape::sGetBodyID(ioCollector.GetContext()), inSubShapeIDCreator.GetID() });
|
||||
}
|
||||
|
||||
void CylinderShape::CollideSoftBodyVertices(Mat44Arg inCenterOfMassTransform, Vec3Arg inScale, const CollideSoftBodyVertexIterator &inVertices, uint inNumVertices, int inCollidingShapeIndex) const
|
||||
{
|
||||
JPH_ASSERT(IsValidScale(inScale));
|
||||
|
||||
Mat44 inverse_transform = inCenterOfMassTransform.InversedRotationTranslation();
|
||||
|
||||
// Get scaled cylinder
|
||||
Vec3 abs_scale = inScale.Abs();
|
||||
float half_height = abs_scale.GetY() * mHalfHeight;
|
||||
float radius = abs_scale.GetX() * mRadius;
|
||||
|
||||
for (CollideSoftBodyVertexIterator v = inVertices, sbv_end = inVertices + inNumVertices; v != sbv_end; ++v)
|
||||
if (v.GetInvMass() > 0.0f)
|
||||
{
|
||||
Vec3 local_pos = inverse_transform * v.GetPosition();
|
||||
|
||||
// Calculate penetration into side surface
|
||||
Vec3 side_normal = local_pos;
|
||||
side_normal.SetY(0.0f);
|
||||
float side_normal_length = side_normal.Length();
|
||||
float side_penetration = radius - side_normal_length;
|
||||
|
||||
// Calculate penetration into top or bottom plane
|
||||
float top_penetration = half_height - abs(local_pos.GetY());
|
||||
|
||||
Vec3 point, normal;
|
||||
if (side_penetration < 0.0f && top_penetration < 0.0f)
|
||||
{
|
||||
// We're outside the cylinder height and radius
|
||||
point = side_normal * (radius / side_normal_length) + Vec3(0, half_height * Sign(local_pos.GetY()), 0);
|
||||
normal = (local_pos - point).NormalizedOr(Vec3::sAxisY());
|
||||
}
|
||||
else if (side_penetration < top_penetration)
|
||||
{
|
||||
// Side surface is closest
|
||||
normal = side_normal_length > 0.0f? side_normal / side_normal_length : Vec3::sAxisX();
|
||||
point = radius * normal;
|
||||
}
|
||||
else
|
||||
{
|
||||
// Top or bottom plane is closest
|
||||
normal = Vec3(0, Sign(local_pos.GetY()), 0);
|
||||
point = half_height * normal;
|
||||
}
|
||||
|
||||
// Calculate penetration
|
||||
Plane plane = Plane::sFromPointAndNormal(point, normal);
|
||||
float penetration = -plane.SignedDistance(local_pos);
|
||||
if (v.UpdatePenetration(penetration))
|
||||
v.SetCollision(plane.GetTransformed(inCenterOfMassTransform), inCollidingShapeIndex);
|
||||
}
|
||||
}
|
||||
|
||||
void CylinderShape::GetTrianglesStart(GetTrianglesContext &ioContext, const AABox &inBox, Vec3Arg inPositionCOM, QuatArg inRotation, Vec3Arg inScale) const
|
||||
{
|
||||
Mat44 unit_cylinder_transform(Vec4(mRadius, 0, 0, 0), Vec4(0, mHalfHeight, 0, 0), Vec4(0, 0, mRadius, 0), Vec4(0, 0, 0, 1));
|
||||
new (&ioContext) GetTrianglesContextVertexList(inPositionCOM, inRotation, inScale, unit_cylinder_transform, sUnitCylinderTriangles.data(), sUnitCylinderTriangles.size(), GetMaterial());
|
||||
}
|
||||
|
||||
int CylinderShape::GetTrianglesNext(GetTrianglesContext &ioContext, int inMaxTrianglesRequested, Float3 *outTriangleVertices, const PhysicsMaterial **outMaterials) const
|
||||
{
|
||||
return ((GetTrianglesContextVertexList &)ioContext).GetTrianglesNext(inMaxTrianglesRequested, outTriangleVertices, outMaterials);
|
||||
}
|
||||
|
||||
void CylinderShape::SaveBinaryState(StreamOut &inStream) const
|
||||
{
|
||||
ConvexShape::SaveBinaryState(inStream);
|
||||
|
||||
inStream.Write(mHalfHeight);
|
||||
inStream.Write(mRadius);
|
||||
inStream.Write(mConvexRadius);
|
||||
}
|
||||
|
||||
void CylinderShape::RestoreBinaryState(StreamIn &inStream)
|
||||
{
|
||||
ConvexShape::RestoreBinaryState(inStream);
|
||||
|
||||
inStream.Read(mHalfHeight);
|
||||
inStream.Read(mRadius);
|
||||
inStream.Read(mConvexRadius);
|
||||
}
|
||||
|
||||
bool CylinderShape::IsValidScale(Vec3Arg inScale) const
|
||||
{
|
||||
return ConvexShape::IsValidScale(inScale) && ScaleHelpers::IsUniformScaleXZ(inScale.Abs());
|
||||
}
|
||||
|
||||
Vec3 CylinderShape::MakeScaleValid(Vec3Arg inScale) const
|
||||
{
|
||||
Vec3 scale = ScaleHelpers::MakeNonZeroScale(inScale);
|
||||
|
||||
return scale.GetSign() * ScaleHelpers::MakeUniformScaleXZ(scale.Abs());
|
||||
}
|
||||
|
||||
void CylinderShape::sRegister()
|
||||
{
|
||||
ShapeFunctions &f = ShapeFunctions::sGet(EShapeSubType::Cylinder);
|
||||
f.mConstruct = []() -> Shape * { return new CylinderShape; };
|
||||
f.mColor = Color::sGreen;
|
||||
}
|
||||
|
||||
JPH_NAMESPACE_END
|
Reference in New Issue
Block a user