initial commit, 4.5 stable
Some checks failed
🔗 GHA / 📊 Static checks (push) Has been cancelled
🔗 GHA / 🤖 Android (push) Has been cancelled
🔗 GHA / 🍏 iOS (push) Has been cancelled
🔗 GHA / 🐧 Linux (push) Has been cancelled
🔗 GHA / 🍎 macOS (push) Has been cancelled
🔗 GHA / 🏁 Windows (push) Has been cancelled
🔗 GHA / 🌐 Web (push) Has been cancelled
Some checks failed
🔗 GHA / 📊 Static checks (push) Has been cancelled
🔗 GHA / 🤖 Android (push) Has been cancelled
🔗 GHA / 🍏 iOS (push) Has been cancelled
🔗 GHA / 🐧 Linux (push) Has been cancelled
🔗 GHA / 🍎 macOS (push) Has been cancelled
🔗 GHA / 🏁 Windows (push) Has been cancelled
🔗 GHA / 🌐 Web (push) Has been cancelled
This commit is contained in:
293
thirdparty/jolt_physics/Jolt/Physics/Vehicle/MotorcycleController.cpp
vendored
Normal file
293
thirdparty/jolt_physics/Jolt/Physics/Vehicle/MotorcycleController.cpp
vendored
Normal file
@@ -0,0 +1,293 @@
|
||||
// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
|
||||
// SPDX-FileCopyrightText: 2023 Jorrit Rouwe
|
||||
// SPDX-License-Identifier: MIT
|
||||
|
||||
#include <Jolt/Jolt.h>
|
||||
|
||||
#include <Jolt/Physics/Vehicle/MotorcycleController.h>
|
||||
#include <Jolt/Physics/PhysicsSystem.h>
|
||||
#include <Jolt/ObjectStream/TypeDeclarations.h>
|
||||
#include <Jolt/Core/StreamIn.h>
|
||||
#include <Jolt/Core/StreamOut.h>
|
||||
#ifdef JPH_DEBUG_RENDERER
|
||||
#include <Jolt/Renderer/DebugRenderer.h>
|
||||
#endif // JPH_DEBUG_RENDERER
|
||||
|
||||
JPH_NAMESPACE_BEGIN
|
||||
|
||||
JPH_IMPLEMENT_SERIALIZABLE_VIRTUAL(MotorcycleControllerSettings)
|
||||
{
|
||||
JPH_ADD_BASE_CLASS(MotorcycleControllerSettings, VehicleControllerSettings)
|
||||
|
||||
JPH_ADD_ATTRIBUTE(MotorcycleControllerSettings, mMaxLeanAngle)
|
||||
JPH_ADD_ATTRIBUTE(MotorcycleControllerSettings, mLeanSpringConstant)
|
||||
JPH_ADD_ATTRIBUTE(MotorcycleControllerSettings, mLeanSpringDamping)
|
||||
JPH_ADD_ATTRIBUTE(MotorcycleControllerSettings, mLeanSpringIntegrationCoefficient)
|
||||
JPH_ADD_ATTRIBUTE(MotorcycleControllerSettings, mLeanSpringIntegrationCoefficientDecay)
|
||||
JPH_ADD_ATTRIBUTE(MotorcycleControllerSettings, mLeanSmoothingFactor)
|
||||
}
|
||||
|
||||
VehicleController *MotorcycleControllerSettings::ConstructController(VehicleConstraint &inConstraint) const
|
||||
{
|
||||
return new MotorcycleController(*this, inConstraint);
|
||||
}
|
||||
|
||||
void MotorcycleControllerSettings::SaveBinaryState(StreamOut &inStream) const
|
||||
{
|
||||
WheeledVehicleControllerSettings::SaveBinaryState(inStream);
|
||||
|
||||
inStream.Write(mMaxLeanAngle);
|
||||
inStream.Write(mLeanSpringConstant);
|
||||
inStream.Write(mLeanSpringDamping);
|
||||
inStream.Write(mLeanSpringIntegrationCoefficient);
|
||||
inStream.Write(mLeanSpringIntegrationCoefficientDecay);
|
||||
inStream.Write(mLeanSmoothingFactor);
|
||||
}
|
||||
|
||||
void MotorcycleControllerSettings::RestoreBinaryState(StreamIn &inStream)
|
||||
{
|
||||
WheeledVehicleControllerSettings::RestoreBinaryState(inStream);
|
||||
|
||||
inStream.Read(mMaxLeanAngle);
|
||||
inStream.Read(mLeanSpringConstant);
|
||||
inStream.Read(mLeanSpringDamping);
|
||||
inStream.Read(mLeanSpringIntegrationCoefficient);
|
||||
inStream.Read(mLeanSpringIntegrationCoefficientDecay);
|
||||
inStream.Read(mLeanSmoothingFactor);
|
||||
}
|
||||
|
||||
MotorcycleController::MotorcycleController(const MotorcycleControllerSettings &inSettings, VehicleConstraint &inConstraint) :
|
||||
WheeledVehicleController(inSettings, inConstraint),
|
||||
mMaxLeanAngle(inSettings.mMaxLeanAngle),
|
||||
mLeanSpringConstant(inSettings.mLeanSpringConstant),
|
||||
mLeanSpringDamping(inSettings.mLeanSpringDamping),
|
||||
mLeanSpringIntegrationCoefficient(inSettings.mLeanSpringIntegrationCoefficient),
|
||||
mLeanSpringIntegrationCoefficientDecay(inSettings.mLeanSpringIntegrationCoefficientDecay),
|
||||
mLeanSmoothingFactor(inSettings.mLeanSmoothingFactor)
|
||||
{
|
||||
}
|
||||
|
||||
float MotorcycleController::GetWheelBase() const
|
||||
{
|
||||
float low = FLT_MAX, high = -FLT_MAX;
|
||||
|
||||
for (const Wheel *w : mConstraint.GetWheels())
|
||||
{
|
||||
const WheelSettings *s = w->GetSettings();
|
||||
|
||||
// Measure distance along the forward axis by looking at the fully extended suspension.
|
||||
// If the suspension force point is active, use that instead.
|
||||
Vec3 force_point = s->mEnableSuspensionForcePoint? s->mSuspensionForcePoint : s->mPosition + s->mSuspensionDirection * s->mSuspensionMaxLength;
|
||||
float value = force_point.Dot(mConstraint.GetLocalForward());
|
||||
|
||||
// Update min and max
|
||||
low = min(low, value);
|
||||
high = max(high, value);
|
||||
}
|
||||
|
||||
return high - low;
|
||||
}
|
||||
|
||||
void MotorcycleController::PreCollide(float inDeltaTime, PhysicsSystem &inPhysicsSystem)
|
||||
{
|
||||
WheeledVehicleController::PreCollide(inDeltaTime, inPhysicsSystem);
|
||||
|
||||
const Body *body = mConstraint.GetVehicleBody();
|
||||
Vec3 forward = body->GetRotation() * mConstraint.GetLocalForward();
|
||||
float wheel_base = GetWheelBase();
|
||||
Vec3 world_up = mConstraint.GetWorldUp();
|
||||
|
||||
if (mEnableLeanController)
|
||||
{
|
||||
// Calculate the target lean vector, this is in the direction of the total applied impulse by the ground on the wheels
|
||||
Vec3 target_lean = Vec3::sZero();
|
||||
for (const Wheel *w : mConstraint.GetWheels())
|
||||
if (w->HasContact())
|
||||
target_lean += w->GetContactNormal() * w->GetSuspensionLambda() + w->GetContactLateral() * w->GetLateralLambda();
|
||||
|
||||
// Normalize the impulse
|
||||
target_lean = target_lean.NormalizedOr(world_up);
|
||||
|
||||
// Smooth the impulse to avoid jittery behavior
|
||||
mTargetLean = mLeanSmoothingFactor * mTargetLean + (1.0f - mLeanSmoothingFactor) * target_lean;
|
||||
|
||||
// Remove forward component, we can only lean sideways
|
||||
mTargetLean -= forward * mTargetLean.Dot(forward);
|
||||
mTargetLean = mTargetLean.NormalizedOr(world_up);
|
||||
|
||||
// Clamp the target lean against the max lean angle
|
||||
Vec3 adjusted_world_up = world_up - forward * world_up.Dot(forward);
|
||||
adjusted_world_up = adjusted_world_up.NormalizedOr(world_up);
|
||||
float w_angle = -Sign(mTargetLean.Cross(adjusted_world_up).Dot(forward)) * ACos(mTargetLean.Dot(adjusted_world_up));
|
||||
if (abs(w_angle) > mMaxLeanAngle)
|
||||
mTargetLean = Quat::sRotation(forward, Sign(w_angle) * mMaxLeanAngle) * adjusted_world_up;
|
||||
|
||||
// Integrate the delta angle
|
||||
Vec3 up = body->GetRotation() * mConstraint.GetLocalUp();
|
||||
float d_angle = -Sign(mTargetLean.Cross(up).Dot(forward)) * ACos(mTargetLean.Dot(up));
|
||||
mLeanSpringIntegratedDeltaAngle += d_angle * inDeltaTime;
|
||||
}
|
||||
else
|
||||
{
|
||||
// Controller not enabled, reset target lean
|
||||
mTargetLean = world_up;
|
||||
|
||||
// Reset integrated delta angle
|
||||
mLeanSpringIntegratedDeltaAngle = 0;
|
||||
}
|
||||
|
||||
JPH_DET_LOG("WheeledVehicleController::PreCollide: mTargetLean: " << mTargetLean);
|
||||
|
||||
// Calculate max steering angle based on the max lean angle we're willing to take
|
||||
// See: https://en.wikipedia.org/wiki/Bicycle_and_motorcycle_dynamics#Leaning
|
||||
// LeanAngle = Atan(Velocity^2 / (Gravity * TurnRadius))
|
||||
// And: https://en.wikipedia.org/wiki/Turning_radius (we're ignoring the tire width)
|
||||
// The CasterAngle is the added according to https://en.wikipedia.org/wiki/Bicycle_and_motorcycle_dynamics#Turning (this is the same formula but without small angle approximation)
|
||||
// TurnRadius = WheelBase / (Sin(SteerAngle) * Cos(CasterAngle))
|
||||
// => SteerAngle = ASin(WheelBase * Tan(LeanAngle) * Gravity / (Velocity^2 * Cos(CasterAngle))
|
||||
// The caster angle is different for each wheel so we can only calculate part of the equation here
|
||||
float max_steer_angle_factor = wheel_base * Tan(mMaxLeanAngle) * (mConstraint.IsGravityOverridden()? mConstraint.GetGravityOverride() : inPhysicsSystem.GetGravity()).Length();
|
||||
|
||||
// Calculate forward velocity
|
||||
float velocity = body->GetLinearVelocity().Dot(forward);
|
||||
float velocity_sq = Square(velocity);
|
||||
|
||||
// Decompose steering into sign and direction
|
||||
float steer_strength = abs(mRightInput);
|
||||
float steer_sign = -Sign(mRightInput);
|
||||
|
||||
for (Wheel *w_base : mConstraint.GetWheels())
|
||||
{
|
||||
WheelWV *w = static_cast<WheelWV *>(w_base);
|
||||
const WheelSettingsWV *s = w->GetSettings();
|
||||
|
||||
// Check if this wheel can steer
|
||||
if (s->mMaxSteerAngle != 0.0f)
|
||||
{
|
||||
// Calculate cos(caster angle), the angle between the steering axis and the up vector
|
||||
float cos_caster_angle = s->mSteeringAxis.Dot(mConstraint.GetLocalUp());
|
||||
|
||||
// Calculate steer angle
|
||||
float steer_angle = steer_strength * w->GetSettings()->mMaxSteerAngle;
|
||||
|
||||
// Clamp to max steering angle
|
||||
if (mEnableLeanSteeringLimit
|
||||
&& velocity_sq > 1.0e-6f && cos_caster_angle > 1.0e-6f)
|
||||
{
|
||||
float max_steer_angle = ASin(max_steer_angle_factor / (velocity_sq * cos_caster_angle));
|
||||
steer_angle = min(steer_angle, max_steer_angle);
|
||||
}
|
||||
|
||||
// Set steering angle
|
||||
w->SetSteerAngle(steer_sign * steer_angle);
|
||||
}
|
||||
}
|
||||
|
||||
// Reset applied impulse
|
||||
mAppliedImpulse = 0;
|
||||
}
|
||||
|
||||
bool MotorcycleController::SolveLongitudinalAndLateralConstraints(float inDeltaTime)
|
||||
{
|
||||
bool impulse = WheeledVehicleController::SolveLongitudinalAndLateralConstraints(inDeltaTime);
|
||||
|
||||
if (mEnableLeanController)
|
||||
{
|
||||
// Only apply a lean impulse if all wheels are in contact, otherwise we can easily spin out
|
||||
bool all_in_contact = true;
|
||||
for (const Wheel *w : mConstraint.GetWheels())
|
||||
if (!w->HasContact() || w->GetSuspensionLambda() <= 0.0f)
|
||||
{
|
||||
all_in_contact = false;
|
||||
break;
|
||||
}
|
||||
|
||||
if (all_in_contact)
|
||||
{
|
||||
Body *body = mConstraint.GetVehicleBody();
|
||||
const MotionProperties *mp = body->GetMotionProperties();
|
||||
|
||||
Vec3 forward = body->GetRotation() * mConstraint.GetLocalForward();
|
||||
Vec3 up = body->GetRotation() * mConstraint.GetLocalUp();
|
||||
|
||||
// Calculate delta to target angle and derivative
|
||||
float d_angle = -Sign(mTargetLean.Cross(up).Dot(forward)) * ACos(mTargetLean.Dot(up));
|
||||
float ddt_angle = body->GetAngularVelocity().Dot(forward);
|
||||
|
||||
// Calculate impulse to apply to get to target lean angle
|
||||
float total_impulse = (mLeanSpringConstant * d_angle - mLeanSpringDamping * ddt_angle + mLeanSpringIntegrationCoefficient * mLeanSpringIntegratedDeltaAngle) * inDeltaTime;
|
||||
|
||||
// Remember angular velocity pre angular impulse
|
||||
Vec3 old_w = mp->GetAngularVelocity();
|
||||
|
||||
// Apply impulse taking into account the impulse we've applied earlier
|
||||
float delta_impulse = total_impulse - mAppliedImpulse;
|
||||
body->AddAngularImpulse(delta_impulse * forward);
|
||||
mAppliedImpulse = total_impulse;
|
||||
|
||||
// Calculate delta angular velocity due to angular impulse
|
||||
Vec3 dw = mp->GetAngularVelocity() - old_w;
|
||||
Vec3 linear_acceleration = Vec3::sZero();
|
||||
float total_lambda = 0.0f;
|
||||
for (Wheel *w_base : mConstraint.GetWheels())
|
||||
{
|
||||
const WheelWV *w = static_cast<WheelWV *>(w_base);
|
||||
|
||||
// We weigh the importance of each contact point according to the contact force
|
||||
float lambda = w->GetSuspensionLambda();
|
||||
total_lambda += lambda;
|
||||
|
||||
// Linear acceleration of contact point is dw x com_to_contact
|
||||
Vec3 r = Vec3(w->GetContactPosition() - body->GetCenterOfMassPosition());
|
||||
linear_acceleration += lambda * dw.Cross(r);
|
||||
}
|
||||
|
||||
// Apply linear impulse to COM to cancel the average velocity change on the wheels due to the angular impulse
|
||||
Vec3 linear_impulse = -linear_acceleration / (total_lambda * mp->GetInverseMass());
|
||||
body->AddImpulse(linear_impulse);
|
||||
|
||||
// Return true if we applied an impulse
|
||||
impulse |= delta_impulse != 0.0f;
|
||||
}
|
||||
else
|
||||
{
|
||||
// Decay the integrated angle because we won't be applying a torque this frame
|
||||
// Uses 1st order Taylor approximation of e^(-decay * dt) = 1 - decay * dt
|
||||
mLeanSpringIntegratedDeltaAngle *= max(0.0f, 1.0f - mLeanSpringIntegrationCoefficientDecay * inDeltaTime);
|
||||
}
|
||||
}
|
||||
|
||||
return impulse;
|
||||
}
|
||||
|
||||
void MotorcycleController::SaveState(StateRecorder &inStream) const
|
||||
{
|
||||
WheeledVehicleController::SaveState(inStream);
|
||||
|
||||
inStream.Write(mTargetLean);
|
||||
}
|
||||
|
||||
void MotorcycleController::RestoreState(StateRecorder &inStream)
|
||||
{
|
||||
WheeledVehicleController::RestoreState(inStream);
|
||||
|
||||
inStream.Read(mTargetLean);
|
||||
}
|
||||
|
||||
#ifdef JPH_DEBUG_RENDERER
|
||||
|
||||
void MotorcycleController::Draw(DebugRenderer *inRenderer) const
|
||||
{
|
||||
WheeledVehicleController::Draw(inRenderer);
|
||||
|
||||
// Draw current and desired lean angle
|
||||
Body *body = mConstraint.GetVehicleBody();
|
||||
RVec3 center_of_mass = body->GetCenterOfMassPosition();
|
||||
Vec3 up = body->GetRotation() * mConstraint.GetLocalUp();
|
||||
inRenderer->DrawArrow(center_of_mass, center_of_mass + up, Color::sYellow, 0.1f);
|
||||
inRenderer->DrawArrow(center_of_mass, center_of_mass + mTargetLean, Color::sRed, 0.1f);
|
||||
}
|
||||
|
||||
#endif // JPH_DEBUG_RENDERER
|
||||
|
||||
JPH_NAMESPACE_END
|
Reference in New Issue
Block a user