initial commit, 4.5 stable
Some checks failed
🔗 GHA / 📊 Static checks (push) Has been cancelled
🔗 GHA / 🤖 Android (push) Has been cancelled
🔗 GHA / 🍏 iOS (push) Has been cancelled
🔗 GHA / 🐧 Linux (push) Has been cancelled
🔗 GHA / 🍎 macOS (push) Has been cancelled
🔗 GHA / 🏁 Windows (push) Has been cancelled
🔗 GHA / 🌐 Web (push) Has been cancelled

This commit is contained in:
2025-09-16 20:46:46 -04:00
commit 9d30169a8d
13378 changed files with 7050105 additions and 0 deletions

View File

@@ -0,0 +1,654 @@
/* The Khronos Data Format Specification (version 1.4.0) */
/*
** Copyright 2015-2025 The Khronos Group Inc.
** SPDX-License-Identifier: Apache-2.0
*/
/* This header defines a structure that can describe the layout of image
formats in memory. This means that the data format is transparent to
the application, and the expectation is that this should be used when
the layout is defined external to the API. Many Khronos APIs deliberately
keep the internal layout of images opaque, to allow proprietary layouts
and optimisations. This structure is not appropriate for describing
opaque layouts. */
/* We stick to standard C89 constructs for simplicity and portability. */
#ifndef _KHR_DATA_FORMAT_H_
#define _KHR_DATA_FORMAT_H_
/* Accessors */
typedef enum _khr_word_e {
KHR_DF_WORD_VENDORID = 0U,
KHR_DF_WORD_DESCRIPTORTYPE = 0U,
KHR_DF_WORD_VERSIONNUMBER = 1U,
KHR_DF_WORD_DESCRIPTORBLOCKSIZE = 1U,
KHR_DF_WORD_MODEL = 2U,
KHR_DF_WORD_PRIMARIES = 2U,
KHR_DF_WORD_TRANSFER = 2U,
KHR_DF_WORD_FLAGS = 2U,
KHR_DF_WORD_TEXELBLOCKDIMENSION0 = 3U,
KHR_DF_WORD_TEXELBLOCKDIMENSION1 = 3U,
KHR_DF_WORD_TEXELBLOCKDIMENSION2 = 3U,
KHR_DF_WORD_TEXELBLOCKDIMENSION3 = 3U,
KHR_DF_WORD_BYTESPLANE0 = 4U,
KHR_DF_WORD_BYTESPLANE1 = 4U,
KHR_DF_WORD_BYTESPLANE2 = 4U,
KHR_DF_WORD_BYTESPLANE3 = 4U,
KHR_DF_WORD_BYTESPLANE4 = 5U,
KHR_DF_WORD_BYTESPLANE5 = 5U,
KHR_DF_WORD_BYTESPLANE6 = 5U,
KHR_DF_WORD_BYTESPLANE7 = 5U,
KHR_DF_WORD_SAMPLESTART = 6U,
KHR_DF_WORD_SAMPLEWORDS = 4U
} khr_df_word_e;
typedef enum _khr_df_shift_e {
KHR_DF_SHIFT_VENDORID = 0U,
KHR_DF_SHIFT_DESCRIPTORTYPE = 17U,
KHR_DF_SHIFT_VERSIONNUMBER = 0U,
KHR_DF_SHIFT_DESCRIPTORBLOCKSIZE = 16U,
KHR_DF_SHIFT_MODEL = 0U,
KHR_DF_SHIFT_PRIMARIES = 8U,
KHR_DF_SHIFT_TRANSFER = 16U,
KHR_DF_SHIFT_FLAGS = 24U,
KHR_DF_SHIFT_TEXELBLOCKDIMENSION0 = 0U,
KHR_DF_SHIFT_TEXELBLOCKDIMENSION1 = 8U,
KHR_DF_SHIFT_TEXELBLOCKDIMENSION2 = 16U,
KHR_DF_SHIFT_TEXELBLOCKDIMENSION3 = 24U,
KHR_DF_SHIFT_BYTESPLANE0 = 0U,
KHR_DF_SHIFT_BYTESPLANE1 = 8U,
KHR_DF_SHIFT_BYTESPLANE2 = 16U,
KHR_DF_SHIFT_BYTESPLANE3 = 24U,
KHR_DF_SHIFT_BYTESPLANE4 = 0U,
KHR_DF_SHIFT_BYTESPLANE5 = 8U,
KHR_DF_SHIFT_BYTESPLANE6 = 16U,
KHR_DF_SHIFT_BYTESPLANE7 = 24U
} khr_df_shift_e;
typedef enum _khr_df_mask_e {
KHR_DF_MASK_VENDORID = 0x1FFFFU,
KHR_DF_MASK_DESCRIPTORTYPE = 0x7FFFU,
KHR_DF_MASK_VERSIONNUMBER = 0xFFFFU,
KHR_DF_MASK_DESCRIPTORBLOCKSIZE = 0xFFFFU,
KHR_DF_MASK_MODEL = 0xFFU,
KHR_DF_MASK_PRIMARIES = 0xFFU,
KHR_DF_MASK_TRANSFER = 0xFFU,
KHR_DF_MASK_FLAGS = 0xFFU,
KHR_DF_MASK_TEXELBLOCKDIMENSION0 = 0xFFU,
KHR_DF_MASK_TEXELBLOCKDIMENSION1 = 0xFFU,
KHR_DF_MASK_TEXELBLOCKDIMENSION2 = 0xFFU,
KHR_DF_MASK_TEXELBLOCKDIMENSION3 = 0xFFU,
KHR_DF_MASK_BYTESPLANE0 = 0xFFU,
KHR_DF_MASK_BYTESPLANE1 = 0xFFU,
KHR_DF_MASK_BYTESPLANE2 = 0xFFU,
KHR_DF_MASK_BYTESPLANE3 = 0xFFU,
KHR_DF_MASK_BYTESPLANE4 = 0xFFU,
KHR_DF_MASK_BYTESPLANE5 = 0xFFU,
KHR_DF_MASK_BYTESPLANE6 = 0xFFU,
KHR_DF_MASK_BYTESPLANE7 = 0xFFU
} khr_df_mask_e;
/* Helper macro:
Extract field X from basic descriptor block BDB */
#define KHR_DFDVAL(BDB, X) \
(((BDB)[KHR_DF_WORD_ ## X] >> (KHR_DF_SHIFT_ ## X)) \
& (KHR_DF_MASK_ ## X))
/* Helper macro:
Set field X of basic descriptor block BDB */
#define KHR_DFDSETVAL(BDB, X, val) \
((BDB)[KHR_DF_WORD_ ## X] = \
((BDB)[KHR_DF_WORD_ ## X] & \
~((KHR_DF_MASK_ ## X) << (KHR_DF_SHIFT_ ## X))) | \
(((uint32_t)(val) & (KHR_DF_MASK_ ## X)) << (KHR_DF_SHIFT_ ## X)))
/* Offsets relative to the start of a sample */
typedef enum _khr_df_sampleword_e {
KHR_DF_SAMPLEWORD_BITOFFSET = 0U,
KHR_DF_SAMPLEWORD_BITLENGTH = 0U,
KHR_DF_SAMPLEWORD_CHANNELID = 0U,
KHR_DF_SAMPLEWORD_QUALIFIERS = 0U,
KHR_DF_SAMPLEWORD_SAMPLEPOSITION0 = 1U,
KHR_DF_SAMPLEWORD_SAMPLEPOSITION1 = 1U,
KHR_DF_SAMPLEWORD_SAMPLEPOSITION2 = 1U,
KHR_DF_SAMPLEWORD_SAMPLEPOSITION3 = 1U,
KHR_DF_SAMPLEWORD_SAMPLEPOSITION_ALL = 1U,
KHR_DF_SAMPLEWORD_SAMPLELOWER = 2U,
KHR_DF_SAMPLEWORD_SAMPLEUPPER = 3U
} khr_df_sampleword_e;
typedef enum _khr_df_sampleshift_e {
KHR_DF_SAMPLESHIFT_BITOFFSET = 0U,
KHR_DF_SAMPLESHIFT_BITLENGTH = 16U,
KHR_DF_SAMPLESHIFT_CHANNELID = 24U,
/* N.B. Qualifiers are defined as an offset into a byte */
KHR_DF_SAMPLESHIFT_QUALIFIERS = 24U,
KHR_DF_SAMPLESHIFT_SAMPLEPOSITION0 = 0U,
KHR_DF_SAMPLESHIFT_SAMPLEPOSITION1 = 8U,
KHR_DF_SAMPLESHIFT_SAMPLEPOSITION2 = 16U,
KHR_DF_SAMPLESHIFT_SAMPLEPOSITION3 = 24U,
KHR_DF_SAMPLESHIFT_SAMPLEPOSITION_ALL = 0U,
KHR_DF_SAMPLESHIFT_SAMPLELOWER = 0U,
KHR_DF_SAMPLESHIFT_SAMPLEUPPER = 0U
} khr_df_sampleshift_e;
typedef enum _khr_df_samplemask_e {
KHR_DF_SAMPLEMASK_BITOFFSET = 0xFFFFU,
KHR_DF_SAMPLEMASK_BITLENGTH = 0xFFU,
KHR_DF_SAMPLEMASK_CHANNELID = 0xFU,
/* N.B. Qualifiers are defined as an offset into a byte */
KHR_DF_SAMPLEMASK_QUALIFIERS = 0xF0U,
KHR_DF_SAMPLEMASK_SAMPLEPOSITION0 = 0xFFU,
KHR_DF_SAMPLEMASK_SAMPLEPOSITION1 = 0xFFU,
KHR_DF_SAMPLEMASK_SAMPLEPOSITION2 = 0xFFU,
KHR_DF_SAMPLEMASK_SAMPLEPOSITION3 = 0xFFU,
/* ISO C restricts enum values to range of int hence the
cast. We do it verbosely instead of using -1 to ensure
it is a 32-bit value even if int is 64 bits. */
KHR_DF_SAMPLEMASK_SAMPLEPOSITION_ALL = (int) 0xFFFFFFFFU,
KHR_DF_SAMPLEMASK_SAMPLELOWER = (int) 0xFFFFFFFFU,
KHR_DF_SAMPLEMASK_SAMPLEUPPER = (int) 0xFFFFFFFFU
} khr_df_samplemask_e;
/* Helper macro:
Extract field X of sample S from basic descriptor block BDB */
#define KHR_DFDSVAL(BDB, S, X) \
(((BDB)[KHR_DF_WORD_SAMPLESTART + \
((S) * KHR_DF_WORD_SAMPLEWORDS) + \
KHR_DF_SAMPLEWORD_ ## X] >> (KHR_DF_SAMPLESHIFT_ ## X)) \
& (KHR_DF_SAMPLEMASK_ ## X))
/* Helper macro:
Set field X of sample S of basic descriptor block BDB */
#define KHR_DFDSETSVAL(BDB, S, X, val) \
((BDB)[KHR_DF_WORD_SAMPLESTART + \
((S) * KHR_DF_WORD_SAMPLEWORDS) + \
KHR_DF_SAMPLEWORD_ ## X] = \
((BDB)[KHR_DF_WORD_SAMPLESTART + \
((S) * KHR_DF_WORD_SAMPLEWORDS) + \
KHR_DF_SAMPLEWORD_ ## X] & \
~((uint32_t)(KHR_DF_SAMPLEMASK_ ## X) << (KHR_DF_SAMPLESHIFT_ ## X))) | \
(((uint32_t)(val) & (uint32_t)(KHR_DF_SAMPLEMASK_ ## X)) << (KHR_DF_SAMPLESHIFT_ ## X)))
/* Helper macro:
Number of samples in basic descriptor block BDB */
#define KHR_DFDSAMPLECOUNT(BDB) \
(((KHR_DFDVAL(BDB, DESCRIPTORBLOCKSIZE) >> 2) - \
KHR_DF_WORD_SAMPLESTART) \
/ KHR_DF_WORD_SAMPLEWORDS)
/* Helper macro:
Size in words of basic descriptor block for S samples */
#define KHR_DFDSIZEWORDS(S) \
(KHR_DF_WORD_SAMPLESTART + \
(S) * KHR_DF_WORD_SAMPLEWORDS)
/* Vendor ids */
typedef enum _khr_df_vendorid_e {
/* Standard Khronos descriptor */
KHR_DF_VENDORID_KHRONOS = 0U,
KHR_DF_VENDORID_MAX = 0x1FFFFU
} khr_df_vendorid_e;
/* Descriptor types */
typedef enum _khr_df_khr_descriptortype_e {
/* Default Khronos basic descriptor block */
KHR_DF_KHR_DESCRIPTORTYPE_BASICFORMAT = 0U,
/* Extension descriptor block for additional planes */
KHR_DF_KHR_DESCRIPTORTYPE_ADDITIONAL_PLANES = 0x6001U,
/* Extension descriptor block for additional dimensions */
KHR_DF_KHR_DESCRIPTORTYPE_ADDITIONAL_DIMENSIONS = 0x6002U,
/* Bit indicates modifying requires understanding this extension */
KHR_DF_KHR_DESCRIPTORTYPE_NEEDED_FOR_WRITE_BIT = 0x2000U,
/* Bit indicates processing requires understanding this extension */
KHR_DF_KHR_DESCRIPTORTYPE_NEEDED_FOR_DECODE_BIT = 0x4000U,
KHR_DF_KHR_DESCRIPTORTYPE_MAX = 0x7FFFU
} khr_df_khr_descriptortype_e;
/* Descriptor block version */
typedef enum _khr_df_versionnumber_e {
/* Standard Khronos descriptor */
KHR_DF_VERSIONNUMBER_1_0 = 0U, /* Version 1.0 of the specification */
KHR_DF_VERSIONNUMBER_1_1 = 0U, /* Version 1.1 did not bump the version number */
KHR_DF_VERSIONNUMBER_1_2 = 1U, /* Version 1.2 increased the version number */
KHR_DF_VERSIONNUMBER_1_3 = 2U, /* Version 1.3 increased the version number */
KHR_DF_VERSIONNUMBER_1_4 = 2U, /* Version 1.4.0 did not bump the block version number */
KHR_DF_VERSIONNUMBER_LATEST = KHR_DF_VERSIONNUMBER_1_4,
KHR_DF_VERSIONNUMBER_MAX = 0xFFFFU
} khr_df_versionnumber_e;
/* Model in which the color coordinate space is defined.
There is no requirement that a color format use all the
channel types that are defined in the color model. */
typedef enum _khr_df_model_e {
/* No interpretation of color channels defined */
KHR_DF_MODEL_UNSPECIFIED = 0U,
/* Color primaries (red, green, blue) + alpha, depth and stencil */
KHR_DF_MODEL_RGBSDA = 1U,
/* Color differences (Y', Cb, Cr) + alpha, depth and stencil */
KHR_DF_MODEL_YUVSDA = 2U,
/* Color differences (Y', I, Q) + alpha, depth and stencil */
KHR_DF_MODEL_YIQSDA = 3U,
/* Perceptual color (CIE L*a*b*) + alpha, depth and stencil */
KHR_DF_MODEL_LABSDA = 4U,
/* Subtractive colors (cyan, magenta, yellow, black) + alpha */
KHR_DF_MODEL_CMYKA = 5U,
/* Non-color coordinate data (X, Y, Z, W) */
KHR_DF_MODEL_XYZW = 6U,
/* Hue, saturation, value, hue angle on color circle, plus alpha */
KHR_DF_MODEL_HSVA_ANG = 7U,
/* Hue, saturation, lightness, hue angle on color circle, plus alpha */
KHR_DF_MODEL_HSLA_ANG = 8U,
/* Hue, saturation, value, hue on color hexagon, plus alpha */
KHR_DF_MODEL_HSVA_HEX = 9U,
/* Hue, saturation, lightness, hue on color hexagon, plus alpha */
KHR_DF_MODEL_HSLA_HEX = 10U,
/* Lightweight approximate color difference (luma, orange, green) */
KHR_DF_MODEL_YCGCOA = 11U,
/* ITU BT.2020 constant luminance YcCbcCrc */
KHR_DF_MODEL_YCCBCCRC = 12U,
/* ITU BT.2100 constant intensity ICtCp */
KHR_DF_MODEL_ICTCP = 13U,
/* CIE 1931 XYZ color coordinates (X, Y, Z) */
KHR_DF_MODEL_CIEXYZ = 14U,
/* CIE 1931 xyY color coordinates (X, Y, Y) */
KHR_DF_MODEL_CIEXYY = 15U,
/* Compressed formats start at 128. */
/* These compressed formats should generally have a single sample,
sited at the 0,0 position of the texel block. Where multiple
channels are used to distinguish formats, these should be cosited. */
/* Direct3D (and S3) compressed formats */
/* Note that premultiplied status is recorded separately */
/* DXT1 "channels" are RGB (0), Alpha (1) */
/* DXT1/BC1 with one channel is opaque */
/* DXT1/BC1 with a cosited alpha sample is transparent */
KHR_DF_MODEL_DXT1A = 128U,
KHR_DF_MODEL_BC1A = 128U,
/* DXT2/DXT3/BC2, with explicit 4-bit alpha */
KHR_DF_MODEL_DXT2 = 129U,
KHR_DF_MODEL_DXT3 = 129U,
KHR_DF_MODEL_BC2 = 129U,
/* DXT4/DXT5/BC3, with interpolated alpha */
KHR_DF_MODEL_DXT4 = 130U,
KHR_DF_MODEL_DXT5 = 130U,
KHR_DF_MODEL_BC3 = 130U,
/* ATI1n/DXT5A/BC4 - single channel interpolated 8-bit data */
/* (The UNORM/SNORM variation is recorded in the channel data) */
KHR_DF_MODEL_ATI1N = 131U,
KHR_DF_MODEL_DXT5A = 131U,
KHR_DF_MODEL_BC4 = 131U,
/* ATI2n_XY/DXN/BC5 - two channel interpolated 8-bit data */
/* (The UNORM/SNORM variation is recorded in the channel data) */
KHR_DF_MODEL_ATI2N_XY = 132U,
KHR_DF_MODEL_DXN = 132U,
KHR_DF_MODEL_BC5 = 132U,
/* BC6H - DX11 format for 16-bit float channels */
KHR_DF_MODEL_BC6H = 133U,
/* BC7 - DX11 format */
KHR_DF_MODEL_BC7 = 134U,
/* Gap left for future desktop expansion */
/* Mobile compressed formats follow */
/* A format of ETC1 indicates that the format shall be decodable
by an ETC1-compliant decoder and not rely on ETC2 features */
KHR_DF_MODEL_ETC1 = 160U,
/* A format of ETC2 is permitted to use ETC2 encodings on top of
the baseline ETC1 specification */
/* The ETC2 format has channels "red", "green", "RGB" and "alpha",
which should be cosited samples */
/* Punch-through alpha can be distinguished from full alpha by
the plane size in bytes required for the texel block */
KHR_DF_MODEL_ETC2 = 161U,
/* Adaptive Scalable Texture Compression */
/* ASTC HDR vs LDR is determined by the float flag in the channel */
/* ASTC block size can be distinguished by texel block size */
KHR_DF_MODEL_ASTC = 162U,
/* ETC1S is a simplified subset of ETC1 */
KHR_DF_MODEL_ETC1S = 163U,
/* PowerVR Texture Compression */
KHR_DF_MODEL_PVRTC = 164U,
KHR_DF_MODEL_PVRTC2 = 165U,
KHR_DF_MODEL_UASTC = 166U,
/* Proprietary formats (ATITC, etc.) should follow */
KHR_DF_MODEL_MAX = 0xFFU
} khr_df_model_e;
/* Definition of channel names for each color model */
typedef enum _khr_df_model_channels_e {
/* Unspecified format with nominal channel numbering */
KHR_DF_CHANNEL_UNSPECIFIED_0 = 0U,
KHR_DF_CHANNEL_UNSPECIFIED_1 = 1U,
KHR_DF_CHANNEL_UNSPECIFIED_2 = 2U,
KHR_DF_CHANNEL_UNSPECIFIED_3 = 3U,
KHR_DF_CHANNEL_UNSPECIFIED_4 = 4U,
KHR_DF_CHANNEL_UNSPECIFIED_5 = 5U,
KHR_DF_CHANNEL_UNSPECIFIED_6 = 6U,
KHR_DF_CHANNEL_UNSPECIFIED_7 = 7U,
KHR_DF_CHANNEL_UNSPECIFIED_8 = 8U,
KHR_DF_CHANNEL_UNSPECIFIED_9 = 9U,
KHR_DF_CHANNEL_UNSPECIFIED_10 = 10U,
KHR_DF_CHANNEL_UNSPECIFIED_11 = 11U,
KHR_DF_CHANNEL_UNSPECIFIED_12 = 12U,
KHR_DF_CHANNEL_UNSPECIFIED_13 = 13U,
KHR_DF_CHANNEL_UNSPECIFIED_14 = 14U,
KHR_DF_CHANNEL_UNSPECIFIED_15 = 15U,
/* MODEL_RGBSDA - red, green, blue, stencil, depth, alpha */
KHR_DF_CHANNEL_RGBSDA_RED = 0U,
KHR_DF_CHANNEL_RGBSDA_R = 0U,
KHR_DF_CHANNEL_RGBSDA_GREEN = 1U,
KHR_DF_CHANNEL_RGBSDA_G = 1U,
KHR_DF_CHANNEL_RGBSDA_BLUE = 2U,
KHR_DF_CHANNEL_RGBSDA_B = 2U,
KHR_DF_CHANNEL_RGBSDA_STENCIL = 13U,
KHR_DF_CHANNEL_RGBSDA_S = 13U,
KHR_DF_CHANNEL_RGBSDA_DEPTH = 14U,
KHR_DF_CHANNEL_RGBSDA_D = 14U,
KHR_DF_CHANNEL_RGBSDA_ALPHA = 15U,
KHR_DF_CHANNEL_RGBSDA_A = 15U,
/* MODEL_YUVSDA - luma, Cb, Cr, stencil, depth, alpha */
KHR_DF_CHANNEL_YUVSDA_Y = 0U,
KHR_DF_CHANNEL_YUVSDA_CB = 1U,
KHR_DF_CHANNEL_YUVSDA_U = 1U,
KHR_DF_CHANNEL_YUVSDA_CR = 2U,
KHR_DF_CHANNEL_YUVSDA_V = 2U,
KHR_DF_CHANNEL_YUVSDA_STENCIL = 13U,
KHR_DF_CHANNEL_YUVSDA_S = 13U,
KHR_DF_CHANNEL_YUVSDA_DEPTH = 14U,
KHR_DF_CHANNEL_YUVSDA_D = 14U,
KHR_DF_CHANNEL_YUVSDA_ALPHA = 15U,
KHR_DF_CHANNEL_YUVSDA_A = 15U,
/* MODEL_YIQSDA - luma, in-phase, quadrature, stencil, depth, alpha */
KHR_DF_CHANNEL_YIQSDA_Y = 0U,
KHR_DF_CHANNEL_YIQSDA_I = 1U,
KHR_DF_CHANNEL_YIQSDA_Q = 2U,
KHR_DF_CHANNEL_YIQSDA_STENCIL = 13U,
KHR_DF_CHANNEL_YIQSDA_S = 13U,
KHR_DF_CHANNEL_YIQSDA_DEPTH = 14U,
KHR_DF_CHANNEL_YIQSDA_D = 14U,
KHR_DF_CHANNEL_YIQSDA_ALPHA = 15U,
KHR_DF_CHANNEL_YIQSDA_A = 15U,
/* MODEL_LABSDA - CIELAB/L*a*b* luma, red-green, blue-yellow, stencil, depth, alpha */
KHR_DF_CHANNEL_LABSDA_L = 0U,
KHR_DF_CHANNEL_LABSDA_A = 1U,
KHR_DF_CHANNEL_LABSDA_B = 2U,
KHR_DF_CHANNEL_LABSDA_STENCIL = 13U,
KHR_DF_CHANNEL_LABSDA_S = 13U,
KHR_DF_CHANNEL_LABSDA_DEPTH = 14U,
KHR_DF_CHANNEL_LABSDA_D = 14U,
KHR_DF_CHANNEL_LABSDA_ALPHA = 15U,
/* NOTE: KHR_DF_CHANNEL_LABSDA_A is not a synonym for alpha! */
/* MODEL_CMYKA - cyan, magenta, yellow, key/blacK, alpha */
KHR_DF_CHANNEL_CMYKSDA_CYAN = 0U,
KHR_DF_CHANNEL_CMYKSDA_C = 0U,
KHR_DF_CHANNEL_CMYKSDA_MAGENTA = 1U,
KHR_DF_CHANNEL_CMYKSDA_M = 1U,
KHR_DF_CHANNEL_CMYKSDA_YELLOW = 2U,
KHR_DF_CHANNEL_CMYKSDA_Y = 2U,
KHR_DF_CHANNEL_CMYKSDA_KEY = 3U,
KHR_DF_CHANNEL_CMYKSDA_BLACK = 3U,
KHR_DF_CHANNEL_CMYKSDA_K = 3U,
KHR_DF_CHANNEL_CMYKSDA_ALPHA = 15U,
KHR_DF_CHANNEL_CMYKSDA_A = 15U,
/* MODEL_XYZW - coordinates x, y, z, w */
KHR_DF_CHANNEL_XYZW_X = 0U,
KHR_DF_CHANNEL_XYZW_Y = 1U,
KHR_DF_CHANNEL_XYZW_Z = 2U,
KHR_DF_CHANNEL_XYZW_W = 3U,
/* MODEL_HSVA_ANG - value (luma), saturation, hue, alpha, angular projection, conical space */
KHR_DF_CHANNEL_HSVA_ANG_VALUE = 0U,
KHR_DF_CHANNEL_HSVA_ANG_V = 0U,
KHR_DF_CHANNEL_HSVA_ANG_SATURATION = 1U,
KHR_DF_CHANNEL_HSVA_ANG_S = 1U,
KHR_DF_CHANNEL_HSVA_ANG_HUE = 2U,
KHR_DF_CHANNEL_HSVA_ANG_H = 2U,
KHR_DF_CHANNEL_HSVA_ANG_ALPHA = 15U,
KHR_DF_CHANNEL_HSVA_ANG_A = 15U,
/* MODEL_HSLA_ANG - lightness (luma), saturation, hue, alpha, angular projection, double conical space */
KHR_DF_CHANNEL_HSLA_ANG_LIGHTNESS = 0U,
KHR_DF_CHANNEL_HSLA_ANG_L = 0U,
KHR_DF_CHANNEL_HSLA_ANG_SATURATION = 1U,
KHR_DF_CHANNEL_HSLA_ANG_S = 1U,
KHR_DF_CHANNEL_HSLA_ANG_HUE = 2U,
KHR_DF_CHANNEL_HSLA_ANG_H = 2U,
KHR_DF_CHANNEL_HSLA_ANG_ALPHA = 15U,
KHR_DF_CHANNEL_HSLA_ANG_A = 15U,
/* MODEL_HSVA_HEX - value (luma), saturation, hue, alpha, hexagonal projection, conical space */
KHR_DF_CHANNEL_HSVA_HEX_VALUE = 0U,
KHR_DF_CHANNEL_HSVA_HEX_V = 0U,
KHR_DF_CHANNEL_HSVA_HEX_SATURATION = 1U,
KHR_DF_CHANNEL_HSVA_HEX_S = 1U,
KHR_DF_CHANNEL_HSVA_HEX_HUE = 2U,
KHR_DF_CHANNEL_HSVA_HEX_H = 2U,
KHR_DF_CHANNEL_HSVA_HEX_ALPHA = 15U,
KHR_DF_CHANNEL_HSVA_HEX_A = 15U,
/* MODEL_HSLA_HEX - lightness (luma), saturation, hue, alpha, hexagonal projection, double conical space */
KHR_DF_CHANNEL_HSLA_HEX_LIGHTNESS = 0U,
KHR_DF_CHANNEL_HSLA_HEX_L = 0U,
KHR_DF_CHANNEL_HSLA_HEX_SATURATION = 1U,
KHR_DF_CHANNEL_HSLA_HEX_S = 1U,
KHR_DF_CHANNEL_HSLA_HEX_HUE = 2U,
KHR_DF_CHANNEL_HSLA_HEX_H = 2U,
KHR_DF_CHANNEL_HSLA_HEX_ALPHA = 15U,
KHR_DF_CHANNEL_HSLA_HEX_A = 15U,
/* MODEL_YCGCOA - luma, green delta, orange delta, alpha */
KHR_DF_CHANNEL_YCGCOA_Y = 0U,
KHR_DF_CHANNEL_YCGCOA_CG = 1U,
KHR_DF_CHANNEL_YCGCOA_CO = 2U,
KHR_DF_CHANNEL_YCGCOA_ALPHA = 15U,
KHR_DF_CHANNEL_YCGCOA_A = 15U,
/* MODEL_CIEXYZ - CIE 1931 X, Y, Z */
KHR_DF_CHANNEL_CIEXYZ_X = 0U,
KHR_DF_CHANNEL_CIEXYZ_Y = 1U,
KHR_DF_CHANNEL_CIEXYZ_Z = 2U,
/* MODEL_CIEXYY - CIE 1931 x, y, Y */
KHR_DF_CHANNEL_CIEXYY_X = 0U,
KHR_DF_CHANNEL_CIEXYY_YCHROMA = 1U,
KHR_DF_CHANNEL_CIEXYY_YLUMA = 2U,
/* Compressed formats */
/* MODEL_DXT1A/MODEL_BC1A */
KHR_DF_CHANNEL_DXT1A_COLOR = 0U,
KHR_DF_CHANNEL_BC1A_COLOR = 0U,
KHR_DF_CHANNEL_DXT1A_ALPHAPRESENT = 1U,
KHR_DF_CHANNEL_DXT1A_ALPHA = 1U,
KHR_DF_CHANNEL_BC1A_ALPHAPRESENT = 1U,
KHR_DF_CHANNEL_BC1A_ALPHA = 1U,
/* MODEL_DXT2/3/MODEL_BC2 */
KHR_DF_CHANNEL_DXT2_COLOR = 0U,
KHR_DF_CHANNEL_DXT3_COLOR = 0U,
KHR_DF_CHANNEL_BC2_COLOR = 0U,
KHR_DF_CHANNEL_DXT2_ALPHA = 15U,
KHR_DF_CHANNEL_DXT3_ALPHA = 15U,
KHR_DF_CHANNEL_BC2_ALPHA = 15U,
/* MODEL_DXT4/5/MODEL_BC3 */
KHR_DF_CHANNEL_DXT4_COLOR = 0U,
KHR_DF_CHANNEL_DXT5_COLOR = 0U,
KHR_DF_CHANNEL_BC3_COLOR = 0U,
KHR_DF_CHANNEL_DXT4_ALPHA = 15U,
KHR_DF_CHANNEL_DXT5_ALPHA = 15U,
KHR_DF_CHANNEL_BC3_ALPHA = 15U,
/* MODEL_BC4 */
KHR_DF_CHANNEL_BC4_DATA = 0U,
/* MODEL_BC5 */
KHR_DF_CHANNEL_BC5_RED = 0U,
KHR_DF_CHANNEL_BC5_R = 0U,
KHR_DF_CHANNEL_BC5_GREEN = 1U,
KHR_DF_CHANNEL_BC5_G = 1U,
/* MODEL_BC6H */
KHR_DF_CHANNEL_BC6H_COLOR = 0U,
KHR_DF_CHANNEL_BC6H_DATA = 0U,
/* MODEL_BC7 */
KHR_DF_CHANNEL_BC7_DATA = 0U,
KHR_DF_CHANNEL_BC7_COLOR = 0U,
/* MODEL_ETC1 */
KHR_DF_CHANNEL_ETC1_DATA = 0U,
KHR_DF_CHANNEL_ETC1_COLOR = 0U,
/* MODEL_ETC2 */
KHR_DF_CHANNEL_ETC2_RED = 0U,
KHR_DF_CHANNEL_ETC2_R = 0U,
KHR_DF_CHANNEL_ETC2_GREEN = 1U,
KHR_DF_CHANNEL_ETC2_G = 1U,
KHR_DF_CHANNEL_ETC2_COLOR = 2U,
KHR_DF_CHANNEL_ETC2_ALPHA = 15U,
KHR_DF_CHANNEL_ETC2_A = 15U,
/* MODEL_ASTC */
KHR_DF_CHANNEL_ASTC_DATA = 0U,
/* MODEL_ETC1S */
KHR_DF_CHANNEL_ETC1S_RGB = 0U,
KHR_DF_CHANNEL_ETC1S_RRR = 3U,
KHR_DF_CHANNEL_ETC1S_GGG = 4U,
KHR_DF_CHANNEL_ETC1S_AAA = 15U,
/* MODEL_PVRTC */
KHR_DF_CHANNEL_PVRTC_DATA = 0U,
KHR_DF_CHANNEL_PVRTC_COLOR = 0U,
/* MODEL_PVRTC2 */
KHR_DF_CHANNEL_PVRTC2_DATA = 0U,
KHR_DF_CHANNEL_PVRTC2_COLOR = 0U,
/* MODEL UASTC */
KHR_DF_CHANNEL_UASTC_RGB = 0U,
KHR_DF_CHANNEL_UASTC_RGBA = 3U,
KHR_DF_CHANNEL_UASTC_RRR = 4U,
KHR_DF_CHANNEL_UASTC_RRRG = 5U,
KHR_DF_CHANNEL_UASTC_RG = 6U,
/* Common channel names shared by multiple formats */
KHR_DF_CHANNEL_COMMON_LUMA = 0U,
KHR_DF_CHANNEL_COMMON_L = 0U,
KHR_DF_CHANNEL_COMMON_STENCIL = 13U,
KHR_DF_CHANNEL_COMMON_S = 13U,
KHR_DF_CHANNEL_COMMON_DEPTH = 14U,
KHR_DF_CHANNEL_COMMON_D = 14U,
KHR_DF_CHANNEL_COMMON_ALPHA = 15U,
KHR_DF_CHANNEL_COMMON_A = 15U
} khr_df_model_channels_e;
/* Definition of the primary colors in color coordinates.
This is implicitly responsible for defining the conversion
between RGB an YUV color spaces.
LAB and related absolute color models should use
KHR_DF_PRIMARIES_CIEXYZ. */
typedef enum _khr_df_primaries_e {
/* No color primaries defined */
KHR_DF_PRIMARIES_UNSPECIFIED = 0U,
/* Color primaries of ITU-R BT.709 and sRGB */
KHR_DF_PRIMARIES_BT709 = 1U,
/* Synonym for KHR_DF_PRIMARIES_BT709 */
KHR_DF_PRIMARIES_SRGB = 1U,
/* Color primaries of ITU-R BT.601 (625-line EBU variant) */
KHR_DF_PRIMARIES_BT601_EBU = 2U,
/* Color primaries of ITU-R BT.601 (525-line SMPTE C variant) */
KHR_DF_PRIMARIES_BT601_SMPTE = 3U,
/* Color primaries of ITU-R BT.2020 */
KHR_DF_PRIMARIES_BT2020 = 4U,
/* ITU-R BT.2100 uses the same primaries as BT.2020 */
KHR_DF_PRIMARIES_BT2100 = 4U,
/* CIE theoretical color coordinate space */
KHR_DF_PRIMARIES_CIEXYZ = 5U,
/* Academy Color Encoding System primaries */
KHR_DF_PRIMARIES_ACES = 6U,
/* Color primaries of ACEScc */
KHR_DF_PRIMARIES_ACESCC = 7U,
/* Legacy NTSC 1953 primaries */
KHR_DF_PRIMARIES_NTSC1953 = 8U,
/* Legacy PAL 525-line primaries */
KHR_DF_PRIMARIES_PAL525 = 9U,
/* Color primaries of Display P3 */
KHR_DF_PRIMARIES_DISPLAYP3 = 10U,
/* Color primaries of Adobe RGB (1998) */
KHR_DF_PRIMARIES_ADOBERGB = 11U,
KHR_DF_PRIMARIES_MAX = 0xFFU
} khr_df_primaries_e;
/* Definition of the optical to digital transfer function
("gamma correction"). Most transfer functions are not a pure
power function and also include a linear element.
LAB and related absolute color representations should use
KHR_DF_TRANSFER_UNSPECIFIED.
These encodings indicate that the representation has had
the corresponding transfer function applied relative to a
linear representation; hence to process the linear intensity
represented by the value, a corresponding inverse transform
must be applied. */
typedef enum _khr_df_transfer_e {
/* No transfer function defined */
KHR_DF_TRANSFER_UNSPECIFIED = 0U,
/* Linear transfer function (value proportional to intensity) */
KHR_DF_TRANSFER_LINEAR = 1U,
/* Perceptually-linear transfer function of sRGB (~2.2); also used for scRGB */
KHR_DF_TRANSFER_SRGB = 2U,
KHR_DF_TRANSFER_SRGB_EOTF = 2U,
KHR_DF_TRANSFER_SCRGB = 2U,
KHR_DF_TRANSFER_SCRGB_EOTF = 2U,
/* Perceptually-linear transfer function of ITU BT.601, BT.709 and BT.2020 (~1/.45) */
KHR_DF_TRANSFER_ITU = 3U,
KHR_DF_TRANSFER_ITU_OETF = 3U,
KHR_DF_TRANSFER_BT601 = 3U,
KHR_DF_TRANSFER_BT601_OETF = 3U,
KHR_DF_TRANSFER_BT709 = 3U,
KHR_DF_TRANSFER_BT709_OETF = 3U,
KHR_DF_TRANSFER_BT2020 = 3U,
KHR_DF_TRANSFER_BT2020_OETF = 3U,
/* SMTPE170M (digital NTSC) defines an alias for the ITU transfer function (~1/.45) and a linear OOTF */
KHR_DF_TRANSFER_SMTPE170M = 3U,
KHR_DF_TRANSFER_SMTPE170M_OETF = 3U,
KHR_DF_TRANSFER_SMTPE170M_EOTF = 3U,
/* Perceptually-linear gamma function of original NTSC (simple 2.2 gamma) */
KHR_DF_TRANSFER_NTSC = 4U,
KHR_DF_TRANSFER_NTSC_EOTF = 4U,
/* Sony S-log used by Sony video cameras */
KHR_DF_TRANSFER_SLOG = 5U,
KHR_DF_TRANSFER_SLOG_OETF = 5U,
/* Sony S-log 2 used by Sony video cameras */
KHR_DF_TRANSFER_SLOG2 = 6U,
KHR_DF_TRANSFER_SLOG2_OETF = 6U,
/* ITU BT.1886 EOTF */
KHR_DF_TRANSFER_BT1886 = 7U,
KHR_DF_TRANSFER_BT1886_EOTF = 7U,
/* ITU BT.2100 HLG OETF (typical scene-referred content), linear light normalized 0..1 */
KHR_DF_TRANSFER_HLG_OETF = 8U,
/* ITU BT.2100 HLG EOTF (nominal HDR display of HLG content), linear light normalized 0..1 */
KHR_DF_TRANSFER_HLG_EOTF = 9U,
/* ITU BT.2100 PQ EOTF (typical HDR display-referred PQ content) */
KHR_DF_TRANSFER_PQ_EOTF = 10U,
/* ITU BT.2100 PQ OETF (nominal scene described by PQ HDR content) */
KHR_DF_TRANSFER_PQ_OETF = 11U,
/* DCI P3 transfer function */
KHR_DF_TRANSFER_DCIP3 = 12U,
KHR_DF_TRANSFER_DCIP3_EOTF = 12U,
/* Legacy PAL OETF */
KHR_DF_TRANSFER_PAL_OETF = 13U,
/* Legacy PAL 625-line EOTF */
KHR_DF_TRANSFER_PAL625_EOTF = 14U,
/* Legacy ST240 transfer function */
KHR_DF_TRANSFER_ST240 = 15U,
KHR_DF_TRANSFER_ST240_OETF = 15U,
KHR_DF_TRANSFER_ST240_EOTF = 15U,
/* ACEScc transfer function */
KHR_DF_TRANSFER_ACESCC = 16U,
KHR_DF_TRANSFER_ACESCC_OETF = 16U,
/* ACEScct transfer function */
KHR_DF_TRANSFER_ACESCCT = 17U,
KHR_DF_TRANSFER_ACESCCT_OETF = 17U,
/* Adobe RGB (1998) transfer function */
KHR_DF_TRANSFER_ADOBERGB = 18U,
KHR_DF_TRANSFER_ADOBERGB_EOTF = 18U,
/* Legacy ITU BT.2100 HLG OETF (typical scene-referred content), linear light normalized 0..12 */
KHR_DF_TRANSFER_HLG_UNNORMALIZED_OETF = 19U,
KHR_DF_TRANSFER_MAX = 0xFFU
} khr_df_transfer_e;
typedef enum _khr_df_flags_e {
KHR_DF_FLAG_ALPHA_STRAIGHT = 0U,
KHR_DF_FLAG_ALPHA_PREMULTIPLIED = 1U
} khr_df_flags_e;
typedef enum _khr_df_sample_datatype_qualifiers_e {
KHR_DF_SAMPLE_DATATYPE_LINEAR = 1U << 4U,
KHR_DF_SAMPLE_DATATYPE_EXPONENT = 1U << 5U,
KHR_DF_SAMPLE_DATATYPE_SIGNED = 1U << 6U,
KHR_DF_SAMPLE_DATATYPE_FLOAT = 1U << 7U
} khr_df_sample_datatype_qualifiers_e;
#endif

View File

@@ -0,0 +1,71 @@
/* Copyright 2019-2020 The Khronos Group Inc.
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @file
* @~English
* @brief Helper functions for colourspaces.
*/
#include <KHR/khr_df.h>
#include "dfd.h"
typedef struct s_PrimaryMapping {
khr_df_primaries_e dfPrimaryEnum;
Primaries primaries;
} sPrimaryMapping;
sPrimaryMapping primaryMap[] = {
{ KHR_DF_PRIMARIES_BT709, { 0.640f,0.330f, 0.300f,0.600f, 0.150f,0.060f, 0.3127f,0.3290f}},
{ KHR_DF_PRIMARIES_BT601_EBU, { 0.640f,0.330f, 0.290f,0.600f, 0.150f,0.060f, 0.3127f,0.3290f}},
{ KHR_DF_PRIMARIES_BT601_SMPTE, { 0.630f,0.340f, 0.310f,0.595f, 0.155f,0.070f, 0.3127f,0.3290f}},
{ KHR_DF_PRIMARIES_BT2020, { 0.708f,0.292f, 0.170f,0.797f, 0.131f,0.046f, 0.3127f,0.3290f}},
{ KHR_DF_PRIMARIES_CIEXYZ, { 1.0f,0.0f, 0.0f,1.0f, 0.0f,0.0f, 0.0f,1.0f}},
{ KHR_DF_PRIMARIES_ACES, { 0.7347f,0.2653f, 0.0f,1.0f, 0.0001f,-0.077f, 0.32168f,0.33767f}},
{ KHR_DF_PRIMARIES_ACESCC, { 0.713f,0.293f, 0.165f,0.830f, 0.128f,0.044f, 0.32168f,0.33767f}},
{ KHR_DF_PRIMARIES_NTSC1953, { 0.67f,0.33f, 0.21f,0.71f, 0.14f,0.08f, 0.310f,0.316f}},
{ KHR_DF_PRIMARIES_PAL525, { 0.630f,0.340f, 0.310f,0.595f, 0.155f,0.070f, 0.3101f,0.3162f}},
{ KHR_DF_PRIMARIES_DISPLAYP3, { 0.6800f,0.3200f, 0.2650f,0.69f, 0.1500f,0.0600f, 0.3127f,0.3290f}},
{ KHR_DF_PRIMARIES_ADOBERGB, { 0.6400f,0.3300f, 0.2100f,0.71f, 0.1500f,0.0600f, 0.3127f,0.3290f}}};
/**
* @brief Map a set of primaries to a KDFS primaries enum.
*
* @param[in] p pointer to a Primaries struct filled in with the primary values.
* @param[in] latitude tolerance to use while matching. A suitable value might be 0.002
* but it depends on the application.
*/
khr_df_primaries_e findMapping(const Primaries *p, float latitude) {
unsigned int i;
for (i = 0; i < sizeof(primaryMap)/sizeof(sPrimaryMapping); ++i) {
if (primaryMap[i].primaries.Rx - p->Rx <= latitude && p->Rx - primaryMap[i].primaries.Rx <= latitude &&
primaryMap[i].primaries.Gx - p->Gx <= latitude && p->Gx - primaryMap[i].primaries.Gx <= latitude &&
primaryMap[i].primaries.Bx - p->Bx <= latitude && p->Bx - primaryMap[i].primaries.Bx <= latitude &&
primaryMap[i].primaries.Wx - p->Wx <= latitude && p->Wx - primaryMap[i].primaries.Wx <= latitude) {
return primaryMap[i].dfPrimaryEnum;
}
}
/* No match */
return KHR_DF_PRIMARIES_UNSPECIFIED;
}
/**
* @brief Get the primaries corresponding to a KDFS primaries enum.
*
* @param[in] primaries the enum identifying the KDFS primaries.
* @param[out] p pointer to a Primaries struct that will
* be filled with the primary values.
*/
bool getPrimaries(khr_df_primaries_e primaries, Primaries *p) {
unsigned int i;
for (i = 0; i < sizeof(primaryMap)/sizeof(sPrimaryMapping); ++i) {
if (primaryMap[i].dfPrimaryEnum == primaries) {
*p = primaryMap[i].primaries;
return true;
}
}
/* No match */
return false;
}

View File

@@ -0,0 +1,809 @@
/* -*- tab-width: 4; -*- */
/* vi: set sw=2 ts=4 expandtab: */
/* Copyright 2019-2020 The Khronos Group Inc.
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @file
* @~English
* @brief Utilities for creating data format descriptors.
*/
/*
* Author: Andrew Garrard
*/
#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include <KHR/khr_df.h>
#include "dfd.h"
typedef enum { i_COLOR, i_NON_COLOR } channels_infotype;
static uint32_t *writeHeader(int numSamples, int bytes, int suffix,
channels_infotype infotype)
{
uint32_t *DFD = (uint32_t *) malloc(sizeof(uint32_t) *
(1 + KHR_DF_WORD_SAMPLESTART +
numSamples * KHR_DF_WORD_SAMPLEWORDS));
uint32_t* BDFD = DFD+1;
DFD[0] = sizeof(uint32_t) *
(1 + KHR_DF_WORD_SAMPLESTART +
numSamples * KHR_DF_WORD_SAMPLEWORDS);
BDFD[KHR_DF_WORD_VENDORID] =
(KHR_DF_VENDORID_KHRONOS << KHR_DF_SHIFT_VENDORID) |
(KHR_DF_KHR_DESCRIPTORTYPE_BASICFORMAT << KHR_DF_SHIFT_DESCRIPTORTYPE);
BDFD[KHR_DF_WORD_VERSIONNUMBER] =
(KHR_DF_VERSIONNUMBER_LATEST << KHR_DF_SHIFT_VERSIONNUMBER) |
(((uint32_t)sizeof(uint32_t) *
(KHR_DF_WORD_SAMPLESTART +
numSamples * KHR_DF_WORD_SAMPLEWORDS)
<< KHR_DF_SHIFT_DESCRIPTORBLOCKSIZE));
BDFD[KHR_DF_WORD_MODEL] =
((KHR_DF_MODEL_RGBSDA << KHR_DF_SHIFT_MODEL) | /* Only supported model */
(KHR_DF_FLAG_ALPHA_STRAIGHT << KHR_DF_SHIFT_FLAGS));
if (infotype == i_COLOR) {
BDFD[KHR_DF_WORD_PRIMARIES] |= KHR_DF_PRIMARIES_BT709 << KHR_DF_SHIFT_PRIMARIES; /* Assumed */
} else {
BDFD[KHR_DF_WORD_PRIMARIES] |= KHR_DF_PRIMARIES_UNSPECIFIED << KHR_DF_SHIFT_PRIMARIES;
}
if (suffix == s_SRGB) {
BDFD[KHR_DF_WORD_TRANSFER] |= KHR_DF_TRANSFER_SRGB << KHR_DF_SHIFT_TRANSFER;
} else {
BDFD[KHR_DF_WORD_TRANSFER] |= KHR_DF_TRANSFER_LINEAR << KHR_DF_SHIFT_TRANSFER;
}
BDFD[KHR_DF_WORD_TEXELBLOCKDIMENSION0] = 0; /* Only 1x1x1x1 texel blocks supported */
BDFD[KHR_DF_WORD_BYTESPLANE0] = bytes; /* bytesPlane0 = bytes, bytesPlane3..1 = 0 */
BDFD[KHR_DF_WORD_BYTESPLANE4] = 0; /* bytesPlane7..5 = 0 */
return DFD;
}
static uint32_t setChannelFlags(uint32_t channel, enum VkSuffix suffix)
{
switch (suffix) {
case s_UNORM: break;
case s_SNORM:
channel |=
KHR_DF_SAMPLE_DATATYPE_SIGNED;
break;
case s_USCALED: break;
case s_SSCALED:
channel |=
KHR_DF_SAMPLE_DATATYPE_SIGNED;
break;
case s_UINT: break;
case s_SINT:
channel |=
KHR_DF_SAMPLE_DATATYPE_SIGNED;
break;
case s_SFLOAT:
channel |=
KHR_DF_SAMPLE_DATATYPE_FLOAT |
KHR_DF_SAMPLE_DATATYPE_SIGNED;
break;
case s_UFLOAT:
channel |=
KHR_DF_SAMPLE_DATATYPE_FLOAT;
break;
case s_SRGB:
if (channel == KHR_DF_CHANNEL_RGBSDA_ALPHA) {
channel |= KHR_DF_SAMPLE_DATATYPE_LINEAR;
}
break;
case s_SFIXED5:
channel |=
KHR_DF_SAMPLE_DATATYPE_SIGNED;
break;
}
return channel;
}
static void writeSample(uint32_t *DFD, int sampleNo, int channel,
int bits, int offset,
int topSample, int bottomSample, enum VkSuffix suffix)
{
// Use this to avoid type-punning complaints from the gcc optimizer
// with -Wall.
union {
uint32_t i;
float f;
} lower, upper;
uint32_t *sample = DFD + 1 + KHR_DF_WORD_SAMPLESTART + sampleNo * KHR_DF_WORD_SAMPLEWORDS;
if (channel == 3) channel = KHR_DF_CHANNEL_RGBSDA_ALPHA;
channel = setChannelFlags(channel, suffix);
sample[KHR_DF_SAMPLEWORD_BITOFFSET] =
(offset << KHR_DF_SAMPLESHIFT_BITOFFSET) |
((bits - 1) << KHR_DF_SAMPLESHIFT_BITLENGTH) |
(channel << KHR_DF_SAMPLESHIFT_CHANNELID);
sample[KHR_DF_SAMPLEWORD_SAMPLEPOSITION_ALL] = 0;
switch (suffix) {
case s_UNORM:
case s_SRGB:
default:
if (bits > 32) {
upper.i = 0xFFFFFFFFU;
} else {
upper.i = (uint32_t)((1U << bits) - 1U);
}
lower.i = 0U;
break;
case s_SNORM:
if (bits > 32) {
upper.i = 0x7FFFFFFF;
} else {
upper.i = topSample ? (1U << (bits - 1)) - 1 : (1U << bits) - 1;
}
lower.i = ~upper.i;
if (bottomSample) lower.i += 1;
break;
case s_USCALED:
case s_UINT:
upper.i = bottomSample ? 1U : 0U;
lower.i = 0U;
break;
case s_SSCALED:
case s_SINT:
upper.i = bottomSample ? 1U : 0U;
lower.i = ~0U;
break;
case s_SFLOAT:
upper.f = 1.0f;
lower.f = -1.0f;
break;
case s_UFLOAT:
upper.f = 1.0f;
lower.f = 0.0f;
break;
case s_SFIXED5:
assert(bits == 16 && "Format with this suffix must be 16 bits per channel.");
upper.i = 32;
lower.i = ~upper.i + 1; // -32
}
sample[KHR_DF_SAMPLEWORD_SAMPLELOWER] = lower.i;
sample[KHR_DF_SAMPLEWORD_SAMPLEUPPER] = upper.i;
}
/**
* @~English
* @brief Create a Data Format Descriptor for an unpacked format.
*
* @param bigEndian Set to 1 for big-endian byte ordering and
0 for little-endian byte ordering.
* @param numChannels The number of color channels.
* @param bytes The number of bytes per channel.
* @param redBlueSwap Normally channels appear in consecutive R, G, B, A order
* in memory; redBlueSwap inverts red and blue, allowing
* B, G, R, A.
* @param suffix Indicates the format suffix for the type.
*
* @return A data format descriptor in malloc'd data. The caller is responsible
* for freeing the descriptor.
**/
uint32_t *createDFDUnpacked(int bigEndian, int numChannels, int bytes,
int redBlueSwap, enum VkSuffix suffix)
{
uint32_t *DFD;
if (bigEndian) {
int channelCounter, channelByte;
/* Number of samples = number of channels * bytes per channel */
DFD = writeHeader(numChannels * bytes, numChannels * bytes, suffix, i_COLOR);
/* First loop over the channels */
for (channelCounter = 0; channelCounter < numChannels; ++channelCounter) {
int channel = channelCounter;
if (redBlueSwap && (channel == 0 || channel == 2)) {
channel ^= 2;
}
/* Loop over the bytes that constitute a channel */
for (channelByte = 0; channelByte < bytes; ++channelByte) {
writeSample(DFD, channelCounter * bytes + channelByte, channel,
8, 8 * (channelCounter * bytes + bytes - channelByte - 1),
channelByte == bytes-1, channelByte == 0, suffix);
}
}
} else { /* Little-endian */
int sampleCounter;
/* One sample per channel */
DFD = writeHeader(numChannels, numChannels * bytes, suffix, i_COLOR);
for (sampleCounter = 0; sampleCounter < numChannels; ++sampleCounter) {
int channel = sampleCounter;
if (redBlueSwap && (channel == 0 || channel == 2)) {
channel ^= 2;
}
writeSample(DFD, sampleCounter, channel,
8 * bytes, 8 * sampleCounter * bytes,
1, 1, suffix);
}
}
return DFD;
}
/**
* @~English
* @brief Create a Data Format Descriptor for a packed format.
*
* @param bigEndian Big-endian flag: Set to 1 for big-endian byte ordering and
* 0 for little-endian byte ordering.
* @param numChannels The number of color channels.
* @param bits[] An array of length numChannels.
* Each entry is the number of bits composing the channel, in
* order starting at bit 0 of the packed type.
* @param shiftBits[] An array of length numChannels.
* Each entry is the number of bits each channel is shifted
* and thus padded with insignificant bits.
* @param channels[] An array of length numChannels.
* Each entry enumerates the channel type: 0 = red, 1 = green,
* 2 = blue, 15 = alpha, in order starting at bit 0 of the
* packed type. These values match channel IDs for RGBSDA in
* the Khronos Data Format header. To simplify iteration
* through channels, channel id 3 is a synonym for alpha.
* @param suffix Indicates the format suffix for the type.
*
* @return A data format descriptor in malloc'd data. The caller is responsible
* for freeing the descriptor.
**/
uint32_t *createDFDPackedShifted(int bigEndian, int numChannels,
int bits[], int shiftBits[], int channels[],
enum VkSuffix suffix)
{
uint32_t *DFD = 0;
if (numChannels == 6) {
/* Special case E5B9G9R9 */
DFD = writeHeader(numChannels, 4, s_UFLOAT, i_COLOR);
writeSample(DFD, 0, 0,
9, 0,
1, 1, s_UNORM);
KHR_DFDSETSVAL((DFD+1), 0, SAMPLEUPPER, 8448);
writeSample(DFD, 1, 0 | KHR_DF_SAMPLE_DATATYPE_EXPONENT,
5, 27,
1, 1, s_UNORM);
KHR_DFDSETSVAL((DFD+1), 1, SAMPLELOWER, 15);
KHR_DFDSETSVAL((DFD+1), 1, SAMPLEUPPER, 31);
writeSample(DFD, 2, 1,
9, 9,
1, 1, s_UNORM);
KHR_DFDSETSVAL((DFD+1), 2, SAMPLEUPPER, 8448);
writeSample(DFD, 3, 1 | KHR_DF_SAMPLE_DATATYPE_EXPONENT,
5, 27,
1, 1, s_UNORM);
KHR_DFDSETSVAL((DFD+1), 3, SAMPLELOWER, 15);
KHR_DFDSETSVAL((DFD+1), 3, SAMPLEUPPER, 31);
writeSample(DFD, 4, 2,
9, 18,
1, 1, s_UNORM);
KHR_DFDSETSVAL((DFD+1), 4, SAMPLEUPPER, 8448);
writeSample(DFD, 5, 2 | KHR_DF_SAMPLE_DATATYPE_EXPONENT,
5, 27,
1, 1, s_UNORM);
KHR_DFDSETSVAL((DFD+1), 5, SAMPLELOWER, 15);
KHR_DFDSETSVAL((DFD+1), 5, SAMPLEUPPER, 31);
} else if (bigEndian) {
/* No packed format is larger than 32 bits. */
/* No packed channel crosses more than two bytes. */
int totalBits = 0;
int bitChannel[32];
int beChannelStart[4];
int channelCounter;
int bitOffset = 0;
int BEMask;
int numSamples = numChannels;
int sampleCounter;
for (channelCounter = 0; channelCounter < numChannels; ++channelCounter) {
beChannelStart[channelCounter] = totalBits;
totalBits += shiftBits[channelCounter] + bits[channelCounter];
}
BEMask = (totalBits - 1) & 0x18;
for (channelCounter = 0; channelCounter < numChannels; ++channelCounter) {
bitOffset += shiftBits[channelCounter];
bitChannel[bitOffset ^ BEMask] = channelCounter;
if (((bitOffset + bits[channelCounter] - 1) & ~7) != (bitOffset & ~7)) {
/* Continuation sample */
bitChannel[((bitOffset + bits[channelCounter] - 1) & ~7) ^ BEMask] = channelCounter;
numSamples++;
}
bitOffset += bits[channelCounter];
}
DFD = writeHeader(numSamples, totalBits >> 3, suffix, i_COLOR);
sampleCounter = 0;
for (bitOffset = 0; bitOffset < totalBits;) {
if (bitChannel[bitOffset] == -1) {
/* Done this bit, so this is the lower half of something. */
/* We must therefore jump to the end of the byte and continue. */
bitOffset = (bitOffset + 8) & ~7;
} else {
/* Start of a channel? */
int thisChannel = bitChannel[bitOffset];
if ((beChannelStart[thisChannel] ^ BEMask) == bitOffset) {
/* Must be just one sample if we hit it first. */
writeSample(DFD, sampleCounter++, channels[thisChannel],
bits[thisChannel], bitOffset,
1, 1, suffix);
bitOffset += bits[thisChannel];
} else {
/* Two samples. Move to the end of the first one we hit when we're done. */
int firstSampleBits = 8 - (beChannelStart[thisChannel] & 0x7); /* Rest of the byte */
int secondSampleBits = bits[thisChannel] - firstSampleBits; /* Rest of the bits */
writeSample(DFD, sampleCounter++, channels[thisChannel],
firstSampleBits, beChannelStart[thisChannel] ^ BEMask,
0, 1, suffix);
/* Mark that we've already handled this sample */
bitChannel[beChannelStart[thisChannel] ^ BEMask] = -1;
writeSample(DFD, sampleCounter++, channels[thisChannel],
secondSampleBits, bitOffset,
1, 0, suffix);
bitOffset += secondSampleBits;
}
}
}
} else { /* Little-endian */
int sampleCounter;
int totalBits = 0;
int bitOffset = 0;
for (sampleCounter = 0; sampleCounter < numChannels; ++sampleCounter) {
totalBits += shiftBits[sampleCounter] + bits[sampleCounter];
}
/* One sample per channel */
DFD = writeHeader(numChannels, totalBits >> 3, suffix, i_COLOR);
for (sampleCounter = 0; sampleCounter < numChannels; ++sampleCounter) {
bitOffset += shiftBits[sampleCounter];
writeSample(DFD, sampleCounter, channels[sampleCounter],
bits[sampleCounter], bitOffset,
1, 1, suffix);
bitOffset += bits[sampleCounter];
}
}
return DFD;
}
/**
* @~English
* @brief Create a Data Format Descriptor for a packed format.
*
* @param bigEndian Big-endian flag: Set to 1 for big-endian byte ordering and
* 0 for little-endian byte ordering.
* @param numChannels The number of color channels.
* @param bits[] An array of length numChannels.
* Each entry is the number of bits composing the channel, in
* order starting at bit 0 of the packed type.
* @param channels[] An array of length numChannels.
* Each entry enumerates the channel type: 0 = red, 1 = green,
* 2 = blue, 15 = alpha, in order starting at bit 0 of the
* packed type. These values match channel IDs for RGBSDA in
* the Khronos Data Format header. To simplify iteration
* through channels, channel id 3 is a synonym for alpha.
* @param suffix Indicates the format suffix for the type.
*
* @return A data format descriptor in malloc'd data. The caller is responsible
* for freeing the descriptor.
**/
uint32_t *createDFDPacked(int bigEndian, int numChannels,
int bits[], int channels[],
enum VkSuffix suffix) {
assert(numChannels <= 6);
int shiftBits[] = {0, 0, 0, 0, 0, 0};
return createDFDPackedShifted(bigEndian, numChannels, bits, shiftBits, channels, suffix);
}
uint32_t *createDFD422(int bigEndian, int numSamples,
int bits[], int shiftBits[], int channels[],
int position_xs[], int position_ys[],
enum VkSuffix suffix) {
assert(!bigEndian); (void) bigEndian;
assert(suffix == s_UNORM); (void) suffix;
int totalBits = 0;
for (int i = 0; i < numSamples; ++i)
totalBits += shiftBits[i] + bits[i];
assert(totalBits % 8 == 0);
uint32_t BDFDSize = sizeof(uint32_t) * (KHR_DF_WORD_SAMPLESTART + numSamples * KHR_DF_WORD_SAMPLEWORDS);
uint32_t DFDSize = sizeof(uint32_t) + BDFDSize;
uint32_t *DFD = (uint32_t *) malloc(DFDSize);
memset(DFD, 0, DFDSize);
DFD[0] = DFDSize;
uint32_t *BDFD = DFD + 1;
KHR_DFDSETVAL(BDFD, VENDORID, KHR_DF_VENDORID_KHRONOS);
KHR_DFDSETVAL(BDFD, DESCRIPTORTYPE, KHR_DF_KHR_DESCRIPTORTYPE_BASICFORMAT);
KHR_DFDSETVAL(BDFD, VERSIONNUMBER, KHR_DF_VERSIONNUMBER_LATEST);
KHR_DFDSETVAL(BDFD, DESCRIPTORBLOCKSIZE, BDFDSize);
KHR_DFDSETVAL(BDFD, MODEL, KHR_DF_MODEL_YUVSDA);
KHR_DFDSETVAL(BDFD, PRIMARIES, KHR_DF_PRIMARIES_UNSPECIFIED);
KHR_DFDSETVAL(BDFD, TRANSFER, KHR_DF_TRANSFER_LINEAR);
KHR_DFDSETVAL(BDFD, FLAGS, KHR_DF_FLAG_ALPHA_STRAIGHT);
KHR_DFDSETVAL(BDFD, TEXELBLOCKDIMENSION0, 2 - 1); // 422 contains 2 x 1 blocks
KHR_DFDSETVAL(BDFD, TEXELBLOCKDIMENSION1, 1 - 1);
KHR_DFDSETVAL(BDFD, TEXELBLOCKDIMENSION2, 1 - 1);
KHR_DFDSETVAL(BDFD, TEXELBLOCKDIMENSION3, 1 - 1);
KHR_DFDSETVAL(BDFD, BYTESPLANE0, totalBits / 8);
KHR_DFDSETVAL(BDFD, BYTESPLANE1, 0);
KHR_DFDSETVAL(BDFD, BYTESPLANE2, 0);
KHR_DFDSETVAL(BDFD, BYTESPLANE3, 0);
KHR_DFDSETVAL(BDFD, BYTESPLANE4, 0);
KHR_DFDSETVAL(BDFD, BYTESPLANE5, 0);
KHR_DFDSETVAL(BDFD, BYTESPLANE6, 0);
KHR_DFDSETVAL(BDFD, BYTESPLANE7, 0);
int bitOffset = 0;
for (int i = 0; i < numSamples; ++i) {
bitOffset += shiftBits[i];
KHR_DFDSETSVAL(BDFD, i, BITOFFSET, bitOffset);
KHR_DFDSETSVAL(BDFD, i, BITLENGTH, bits[i] - 1);
KHR_DFDSETSVAL(BDFD, i, CHANNELID, channels[i]);
KHR_DFDSETSVAL(BDFD, i, QUALIFIERS, 0); // None of: FLOAT, SIGNED, EXPONENT, LINEAR
KHR_DFDSETSVAL(BDFD, i, SAMPLEPOSITION0, position_xs[i]);
KHR_DFDSETSVAL(BDFD, i, SAMPLEPOSITION1, position_ys[i]);
KHR_DFDSETSVAL(BDFD, i, SAMPLEPOSITION2, 0);
KHR_DFDSETSVAL(BDFD, i, SAMPLEPOSITION3, 0);
KHR_DFDSETSVAL(BDFD, i, SAMPLELOWER, 0);
KHR_DFDSETSVAL(BDFD, i, SAMPLEUPPER, (1u << bits[i]) - 1u);
bitOffset += bits[i];
}
return DFD;
}
static khr_df_model_e compModelMapping[] = {
KHR_DF_MODEL_BC1A, /*!< BC1, aka DXT1, no alpha. */
KHR_DF_MODEL_BC1A, /*!< BC1, aka DXT1, punch-through alpha. */
KHR_DF_MODEL_BC2, /*!< BC2, aka DXT2 and DXT3. */
KHR_DF_MODEL_BC3, /*!< BC3, aka DXT4 and DXT5. */
KHR_DF_MODEL_BC4, /*!< BC4. */
KHR_DF_MODEL_BC5, /*!< BC5. */
KHR_DF_MODEL_BC6H, /*!< BC6h HDR format. */
KHR_DF_MODEL_BC7, /*!< BC7. */
KHR_DF_MODEL_ETC2, /*!< ETC2 no alpha. */
KHR_DF_MODEL_ETC2, /*!< ETC2 punch-through alpha. */
KHR_DF_MODEL_ETC2, /*!< ETC2 independent alpha. */
KHR_DF_MODEL_ETC2, /*!< R11 ETC2 single-channel. */
KHR_DF_MODEL_ETC2, /*!< R11G11 ETC2 dual-channel. */
KHR_DF_MODEL_ASTC, /*!< ASTC. */
KHR_DF_MODEL_ETC1S, /*!< ETC1S. */
KHR_DF_MODEL_PVRTC, /*!< PVRTC(1). */
KHR_DF_MODEL_PVRTC2 /*!< PVRTC2. */
};
static uint32_t compSampleCount[] = {
1U, /*!< BC1, aka DXT1, no alpha. */
1U, /*!< BC1, aka DXT1, punch-through alpha. */
2U, /*!< BC2, aka DXT2 and DXT3. */
2U, /*!< BC3, aka DXT4 and DXT5. */
1U, /*!< BC4. */
2U, /*!< BC5. */
1U, /*!< BC6h HDR format. */
1U, /*!< BC7. */
1U, /*!< ETC2 no alpha. */
2U, /*!< ETC2 punch-through alpha. */
2U, /*!< ETC2 independent alpha. */
1U, /*!< R11 ETC2 single-channel. */
2U, /*!< R11G11 ETC2 dual-channel. */
1U, /*!< ASTC. */
1U, /*!< ETC1S. */
1U, /*!< PVRTC. */
1U /*!< PVRTC2. */
};
static khr_df_model_channels_e compFirstChannel[] = {
KHR_DF_CHANNEL_BC1A_COLOR, /*!< BC1, aka DXT1, no alpha. */
KHR_DF_CHANNEL_BC1A_ALPHAPRESENT, /*!< BC1, aka DXT1, punch-through alpha. */
KHR_DF_CHANNEL_BC2_ALPHA, /*!< BC2, aka DXT2 and DXT3. */
KHR_DF_CHANNEL_BC3_ALPHA, /*!< BC3, aka DXT4 and DXT5. */
KHR_DF_CHANNEL_BC4_DATA, /*!< BC4. */
KHR_DF_CHANNEL_BC5_RED, /*!< BC5. */
KHR_DF_CHANNEL_BC6H_COLOR, /*!< BC6h HDR format. */
KHR_DF_CHANNEL_BC7_COLOR, /*!< BC7. */
KHR_DF_CHANNEL_ETC2_COLOR, /*!< ETC2 no alpha. */
KHR_DF_CHANNEL_ETC2_COLOR, /*!< ETC2 punch-through alpha. */
KHR_DF_CHANNEL_ETC2_ALPHA, /*!< ETC2 independent alpha. */
KHR_DF_CHANNEL_ETC2_RED, /*!< R11 ETC2 single-channel. */
KHR_DF_CHANNEL_ETC2_RED, /*!< R11G11 ETC2 dual-channel. */
KHR_DF_CHANNEL_ASTC_DATA, /*!< ASTC. */
KHR_DF_CHANNEL_ETC1S_RGB, /*!< ETC1S. */
KHR_DF_CHANNEL_PVRTC_COLOR, /*!< PVRTC. */
KHR_DF_CHANNEL_PVRTC2_COLOR /*!< PVRTC2. */
};
static khr_df_model_channels_e compSecondChannel[] = {
KHR_DF_CHANNEL_BC1A_COLOR, /*!< BC1, aka DXT1, no alpha. */
KHR_DF_CHANNEL_BC1A_ALPHAPRESENT, /*!< BC1, aka DXT1, punch-through alpha. */
KHR_DF_CHANNEL_BC2_COLOR, /*!< BC2, aka DXT2 and DXT3. */
KHR_DF_CHANNEL_BC3_COLOR, /*!< BC3, aka DXT4 and DXT5. */
KHR_DF_CHANNEL_BC4_DATA, /*!< BC4. */
KHR_DF_CHANNEL_BC5_GREEN, /*!< BC5. */
KHR_DF_CHANNEL_BC6H_COLOR, /*!< BC6h HDR format. */
KHR_DF_CHANNEL_BC7_COLOR, /*!< BC7. */
KHR_DF_CHANNEL_ETC2_COLOR, /*!< ETC2 no alpha. */
KHR_DF_CHANNEL_ETC2_ALPHA, /*!< ETC2 punch-through alpha. */
KHR_DF_CHANNEL_ETC2_COLOR, /*!< ETC2 independent alpha. */
KHR_DF_CHANNEL_ETC2_RED, /*!< R11 ETC2 single-channel. */
KHR_DF_CHANNEL_ETC2_GREEN, /*!< R11G11 ETC2 dual-channel. */
KHR_DF_CHANNEL_ASTC_DATA, /*!< ASTC. */
KHR_DF_CHANNEL_ETC1S_RGB, /*!< ETC1S. */
KHR_DF_CHANNEL_PVRTC_COLOR, /*!< PVRTC. */
KHR_DF_CHANNEL_PVRTC2_COLOR /*!< PVRTC2. */
};
static uint32_t compSecondChannelOffset[] = {
0U, /*!< BC1, aka DXT1, no alpha. */
0U, /*!< BC1, aka DXT1, punch-through alpha. */
64U, /*!< BC2, aka DXT2 and DXT3. */
64U, /*!< BC3, aka DXT4 and DXT5. */
0U, /*!< BC4. */
64U, /*!< BC5. */
0U, /*!< BC6h HDR format. */
0U, /*!< BC7. */
0U, /*!< ETC2 no alpha. */
0U, /*!< ETC2 punch-through alpha. */
64U, /*!< ETC2 independent alpha. */
0U, /*!< R11 ETC2 single-channel. */
64U, /*!< R11G11 ETC2 dual-channel. */
0U, /*!< ASTC. */
0U, /*!< ETC1S. */
0U, /*!< PVRTC. */
0U /*!< PVRTC2. */
};
static uint32_t compChannelBits[] = {
64U, /*!< BC1, aka DXT1, no alpha. */
64U, /*!< BC1, aka DXT1, punch-through alpha. */
64U, /*!< BC2, aka DXT2 and DXT3. */
64U, /*!< BC3, aka DXT4 and DXT5. */
64U, /*!< BC4. */
64U, /*!< BC5. */
128U, /*!< BC6h HDR format. */
128U, /*!< BC7. */
64U, /*!< ETC2 no alpha. */
64U, /*!< ETC2 punch-through alpha. */
64U, /*!< ETC2 independent alpha. */
64U, /*!< R11 ETC2 single-channel. */
64U, /*!< R11G11 ETC2 dual-channel. */
128U, /*!< ASTC. */
64U, /*!< ETC1S. */
64U, /*!< PVRTC. */
64U /*!< PVRTC2. */
};
static uint32_t compBytes[] = {
8U, /*!< BC1, aka DXT1, no alpha. */
8U, /*!< BC1, aka DXT1, punch-through alpha. */
16U, /*!< BC2, aka DXT2 and DXT3. */
16U, /*!< BC3, aka DXT4 and DXT5. */
8U, /*!< BC4. */
16U, /*!< BC5. */
16U, /*!< BC6h HDR format. */
16U, /*!< BC7. */
8U, /*!< ETC2 no alpha. */
8U, /*!< ETC2 punch-through alpha. */
16U, /*!< ETC2 independent alpha. */
8U, /*!< R11 ETC2 single-channel. */
16U, /*!< R11G11 ETC2 dual-channel. */
16U, /*!< ASTC. */
8U, /*!< ETC1S. */
8U, /*!< PVRTC. */
8U /*!< PVRTC2. */
};
/**
* @~English
* @brief Create a Data Format Descriptor for a compressed format.
*
* @param compScheme Vulkan-style compression scheme enumeration.
* @param bwidth Block width in texel coordinates.
* @param bheight Block height in texel coordinates.
* @param bdepth Block depth in texel coordinates.
* @author Mark Callow, Edgewise Consulting.
* @param suffix Indicates the format suffix for the type.
*
* @return A data format descriptor in malloc'd data. The caller is responsible
* for freeing the descriptor.
**/
uint32_t *createDFDCompressed(enum VkCompScheme compScheme, int bwidth, int bheight, int bdepth,
enum VkSuffix suffix)
{
uint32_t *DFD = 0;
uint32_t numSamples = compSampleCount[compScheme];
uint32_t* BDFD;
uint32_t *sample;
uint32_t channel;
// Use union to avoid type-punning complaints from gcc optimizer
// with -Wall.
union {
uint32_t i;
float f;
} lower, upper;
DFD = (uint32_t *) malloc(sizeof(uint32_t) *
(1 + KHR_DF_WORD_SAMPLESTART +
numSamples * KHR_DF_WORD_SAMPLEWORDS));
BDFD = DFD+1;
DFD[0] = sizeof(uint32_t) *
(1 + KHR_DF_WORD_SAMPLESTART +
numSamples * KHR_DF_WORD_SAMPLEWORDS);
BDFD[KHR_DF_WORD_VENDORID] =
(KHR_DF_VENDORID_KHRONOS << KHR_DF_SHIFT_VENDORID) |
(KHR_DF_KHR_DESCRIPTORTYPE_BASICFORMAT << KHR_DF_SHIFT_DESCRIPTORTYPE);
BDFD[KHR_DF_WORD_VERSIONNUMBER] =
(KHR_DF_VERSIONNUMBER_LATEST << KHR_DF_SHIFT_VERSIONNUMBER) |
(((uint32_t)sizeof(uint32_t) *
(KHR_DF_WORD_SAMPLESTART +
numSamples * KHR_DF_WORD_SAMPLEWORDS)
<< KHR_DF_SHIFT_DESCRIPTORBLOCKSIZE));
BDFD[KHR_DF_WORD_MODEL] =
((compModelMapping[compScheme] << KHR_DF_SHIFT_MODEL) |
(KHR_DF_PRIMARIES_BT709 << KHR_DF_SHIFT_PRIMARIES) | /* Assumed */
(KHR_DF_FLAG_ALPHA_STRAIGHT << KHR_DF_SHIFT_FLAGS));
if (suffix == s_SRGB) {
BDFD[KHR_DF_WORD_TRANSFER] |= KHR_DF_TRANSFER_SRGB << KHR_DF_SHIFT_TRANSFER;
} else {
BDFD[KHR_DF_WORD_TRANSFER] |= KHR_DF_TRANSFER_LINEAR << KHR_DF_SHIFT_TRANSFER;
}
BDFD[KHR_DF_WORD_TEXELBLOCKDIMENSION0] =
(bwidth - 1) | ((bheight - 1) << KHR_DF_SHIFT_TEXELBLOCKDIMENSION1) | ((bdepth - 1) << KHR_DF_SHIFT_TEXELBLOCKDIMENSION2);
/* bytesPlane0 = bytes, bytesPlane3..1 = 0 */
BDFD[KHR_DF_WORD_BYTESPLANE0] = compBytes[compScheme];
BDFD[KHR_DF_WORD_BYTESPLANE4] = 0; /* bytesPlane7..5 = 0 */
sample = BDFD + KHR_DF_WORD_SAMPLESTART;
channel = compFirstChannel[compScheme];
channel = setChannelFlags(channel, suffix);
sample[KHR_DF_SAMPLEWORD_BITOFFSET] =
(0 << KHR_DF_SAMPLESHIFT_BITOFFSET) |
((compChannelBits[compScheme] - 1) << KHR_DF_SAMPLESHIFT_BITLENGTH) |
(channel << KHR_DF_SAMPLESHIFT_CHANNELID);
sample[KHR_DF_SAMPLEWORD_SAMPLEPOSITION_ALL] = 0;
switch (suffix) {
case s_UNORM:
case s_SRGB:
default:
upper.i = 0xFFFFFFFFU;
lower.i = 0U;
break;
case s_SNORM:
upper.i = 0x7FFFFFFF;
lower.i = ~upper.i;
break;
case s_USCALED:
case s_UINT:
upper.i = 1U;
lower.i = 0U;
break;
case s_SSCALED:
case s_SINT:
upper.i = 1U;
lower.i = ~0U;
break;
case s_SFLOAT:
upper.f = 1.0f;
lower.f = -1.0f;
break;
case s_UFLOAT:
upper.f = 1.0f;
lower.f = 0.0f;
break;
}
sample[KHR_DF_SAMPLEWORD_SAMPLELOWER] = lower.i;
sample[KHR_DF_SAMPLEWORD_SAMPLEUPPER] = upper.i;
if (compSampleCount[compScheme] > 1) {
sample += KHR_DF_WORD_SAMPLEWORDS;
channel = compSecondChannel[compScheme];
channel = setChannelFlags(channel, suffix);
sample[KHR_DF_SAMPLEWORD_BITOFFSET] =
(compSecondChannelOffset[compScheme] << KHR_DF_SAMPLESHIFT_BITOFFSET) |
((compChannelBits[compScheme] - 1) << KHR_DF_SAMPLESHIFT_BITLENGTH) |
(channel << KHR_DF_SAMPLESHIFT_CHANNELID);
sample[KHR_DF_SAMPLEWORD_SAMPLEPOSITION_ALL] = 0;
sample[KHR_DF_SAMPLEWORD_SAMPLELOWER] = lower.i;
sample[KHR_DF_SAMPLEWORD_SAMPLEUPPER] = upper.i;
}
return DFD;
}
/**
* @~English
* @brief Create a Data Format Descriptor for a depth-stencil format.
*
* @param depthBits The numeber of bits in the depth channel.
* @param stencilBits The numeber of bits in the stencil channel.
* @param sizeBytes The total byte size of the texel.
*
* @return A data format descriptor in malloc'd data. The caller is responsible
* for freeing the descriptor.
**/
uint32_t *createDFDDepthStencil(int depthBits,
int stencilBits,
int sizeBytes)
{
/* N.B. Little-endian is assumed. */
uint32_t *DFD = 0;
DFD = writeHeader((depthBits > 0) + (stencilBits > 0),
sizeBytes, s_UNORM, i_NON_COLOR);
/* Handle the special case of D24_UNORM_S8_UINT where the order of the
channels is flipped by putting stencil in the LSBs. */
if (depthBits == 24 && stencilBits == 8) {
writeSample(DFD, 0, KHR_DF_CHANNEL_RGBSDA_STENCIL,
8, 0,
1, 1, s_UINT);
writeSample(DFD, 1, KHR_DF_CHANNEL_RGBSDA_DEPTH,
24, 8,
1, 1, s_UNORM);
return DFD;
}
if (depthBits == 32) {
writeSample(DFD, 0, KHR_DF_CHANNEL_RGBSDA_DEPTH,
32, 0,
1, 1, s_SFLOAT);
} else if (depthBits > 0) {
writeSample(DFD, 0, KHR_DF_CHANNEL_RGBSDA_DEPTH,
depthBits, 0,
1, 1, s_UNORM);
}
if (stencilBits > 0) {
if (depthBits > 0) {
writeSample(DFD, 1, KHR_DF_CHANNEL_RGBSDA_STENCIL,
stencilBits, depthBits,
1, 1, s_UINT);
} else {
writeSample(DFD, 0, KHR_DF_CHANNEL_RGBSDA_STENCIL,
stencilBits, 0,
1, 1, s_UINT);
}
}
return DFD;
}
/**
* @~English
* @brief Create a Data Format Descriptor for an alpha-only format.
*
* @param bigEndian Set to 1 for big-endian byte ordering and
0 for little-endian byte ordering.
* @param bytes The number of bytes per channel.
* @param suffix Indicates the format suffix for the type.
*
* @return A data format descriptor in malloc'd data. The caller is responsible
* for freeing the descriptor.
**/
uint32_t *createDFDAlpha(int bigEndian, int bytes,
enum VkSuffix suffix) {
uint32_t *DFD;
int channel = 3; /* alpha channel */
if (bigEndian) {
int channelByte;
/* Number of samples = number of channels * bytes per channel */
DFD = writeHeader(bytes, bytes, suffix, i_COLOR);
/* Loop over the bytes that constitute a channel */
for (channelByte = 0; channelByte < bytes; ++channelByte) {
writeSample(DFD, channelByte, channel,
8, 8 * (bytes - channelByte - 1),
channelByte == bytes-1, channelByte == 0, suffix);
}
} else { /* Little-endian */
/* One sample per channel */
DFD = writeHeader(1, bytes, suffix, i_COLOR);
writeSample(DFD, 0, channel,
8 * bytes, 0,
1, 1, suffix);
}
return DFD;
}

View File

@@ -0,0 +1,236 @@
/* -*- tab-width: 4; -*- */
/* vi: set sw=2 ts=4 expandtab: */
/* Copyright 2019-2020 The Khronos Group Inc.
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @file
* @~English
* @brief Header file defining the data format descriptor utilities API.
*/
/*
* Author: Andrew Garrard
*/
#ifndef _DFD_H_
#define _DFD_H_
#include <KHR/khr_df.h>
#include <stdbool.h>
#ifdef __cplusplus
extern "C" {
#endif
/** Qualifier suffix to the format, in Vulkan terms. */
enum VkSuffix {
s_UNORM, /*!< Unsigned normalized format. */
s_SNORM, /*!< Signed normalized format. */
s_USCALED, /*!< Unsigned scaled format. */
s_SSCALED, /*!< Signed scaled format. */
s_UINT, /*!< Unsigned integer format. */
s_SINT, /*!< Signed integer format. */
s_SFLOAT, /*!< Signed float format. */
s_UFLOAT, /*!< Unsigned float format. */
s_SRGB, /*!< sRGB normalized format. */
s_SFIXED5 /*!< 2's complement fixed-point; 5 fractional bits. */
};
/** Compression scheme, in Vulkan terms. */
enum VkCompScheme {
c_BC1_RGB, /*!< BC1, aka DXT1, no alpha. */
c_BC1_RGBA, /*!< BC1, aka DXT1, punch-through alpha. */
c_BC2, /*!< BC2, aka DXT2 and DXT3. */
c_BC3, /*!< BC3, aka DXT4 and DXT5. */
c_BC4, /*!< BC4. */
c_BC5, /*!< BC5. */
c_BC6H, /*!< BC6h HDR format. */
c_BC7, /*!< BC7. */
c_ETC2_R8G8B8, /*!< ETC2 no alpha. */
c_ETC2_R8G8B8A1, /*!< ETC2 punch-through alpha. */
c_ETC2_R8G8B8A8, /*!< ETC2 independent alpha. */
c_EAC_R11, /*!< R11 ETC2 single-channel. */
c_EAC_R11G11, /*!< R11G11 ETC2 dual-channel. */
c_ASTC, /*!< ASTC. */
c_ETC1S, /*!< ETC1S. */
c_PVRTC, /*!< PVRTC(1). */
c_PVRTC2 /*!< PVRTC2. */
};
typedef unsigned int uint32_t;
#if !defined(LIBKTX)
#include <vulkan/vulkan_core.h>
#else
#include "../../lib/vkformat_enum.h"
#endif
uint32_t* vk2dfd(enum VkFormat format);
enum VkFormat dfd2vk(uint32_t* dfd);
/* Create a Data Format Descriptor for an unpacked format. */
uint32_t *createDFDUnpacked(int bigEndian, int numChannels, int bytes,
int redBlueSwap, enum VkSuffix suffix);
/* Create a Data Format Descriptor for a packed padded format. */
uint32_t *createDFDPackedShifted(int bigEndian, int numChannels,
int bits[], int shiftBits[],
int channels[], enum VkSuffix suffix);
/* Create a Data Format Descriptor for a packed format. */
uint32_t *createDFDPacked(int bigEndian, int numChannels,
int bits[], int channels[],
enum VkSuffix suffix);
/* Create a Data Format Descriptor for a 4:2:2 format. */
uint32_t *createDFD422(int bigEndian, int numChannels,
int bits[], int shiftBits[], int channels[],
int position_xs[], int position_ys[],
enum VkSuffix suffix);
/* Create a Data Format Descriptor for a compressed format. */
uint32_t *createDFDCompressed(enum VkCompScheme compScheme,
int bwidth, int bheight, int bdepth,
enum VkSuffix suffix);
/* Create a Data Format Descriptor for a depth/stencil format. */
uint32_t *createDFDDepthStencil(int depthBits,
int stencilBits,
int sizeBytes);
/* Create a Data Format Descriptor for an alpha-only format */
uint32_t *createDFDAlpha(int bigEndian, int bytes,
enum VkSuffix suffix);
/** @brief Result of interpreting the data format descriptor. */
enum InterpretDFDResult {
i_LITTLE_ENDIAN_FORMAT_BIT = 0, /*!< Confirmed little-endian (default for 8bpc). */
i_BIG_ENDIAN_FORMAT_BIT = 1u << 0u, /*!< Confirmed big-endian. */
i_PACKED_FORMAT_BIT = 1u << 1u, /*!< Packed format. */
i_SRGB_FORMAT_BIT = 1u << 2u, /*!< sRGB transfer function. */
i_NORMALIZED_FORMAT_BIT = 1u << 3u, /*!< Normalized (UNORM or SNORM). */
i_SIGNED_FORMAT_BIT = 1u << 4u, /*!< Format is signed. */
i_FIXED_FORMAT_BIT = 1u << 5u, /*!< Format is a fixed-point representation. */
i_FLOAT_FORMAT_BIT = 1u << 6u, /*!< Format is floating point. */
i_COMPRESSED_FORMAT_BIT = 1u << 7u, /*!< Format is block compressed (422). */
i_YUVSDA_FORMAT_BIT = 1u << 8u, /*!< Color model is YUVSDA. */
i_UNSUPPORTED_ERROR_BIT = 1u << 9u, /*!< Format not successfully interpreted. */
/** "NONTRIVIAL_ENDIANNESS" means not big-endian, not little-endian
* (a channel has bits that are not consecutive in either order). **/
i_UNSUPPORTED_NONTRIVIAL_ENDIANNESS = i_UNSUPPORTED_ERROR_BIT,
/** "MULTIPLE_SAMPLE_LOCATIONS" is an error because only single-sample
* texel blocks (with coordinates 0,0,0,0 for all samples) are supported. **/
i_UNSUPPORTED_MULTIPLE_SAMPLE_LOCATIONS = i_UNSUPPORTED_ERROR_BIT + 1,
/** "MULTIPLE_PLANES" is an error because only contiguous data is supported. */
i_UNSUPPORTED_MULTIPLE_PLANES = i_UNSUPPORTED_ERROR_BIT + 2,
/** Only channels R, G, B and A are supported. */
i_UNSUPPORTED_CHANNEL_TYPES = i_UNSUPPORTED_ERROR_BIT + 3,
/** Only channels with the same flags are supported
* (e.g. we don't support float red with integer green). */
i_UNSUPPORTED_MIXED_CHANNELS = i_UNSUPPORTED_ERROR_BIT + 4,
/** Only 2x1 block is supported for YUVSDA model. */
i_UNSUPPORTED_BLOCK_DIMENSIONS = i_UNSUPPORTED_ERROR_BIT + 5,
};
/** @brief Interpretation of a channel from the data format descriptor. */
typedef struct _InterpretedDFDChannel {
uint32_t offset; /*!< Offset in bits for packed, bytes for unpacked. */
uint32_t size; /*!< Size in bits for packed, bytes for unpacked. */
} InterpretedDFDChannel;
/* Interpret a Data Format Descriptor. */
enum InterpretDFDResult interpretDFD(const uint32_t *DFD,
InterpretedDFDChannel *R,
InterpretedDFDChannel *G,
InterpretedDFDChannel *B,
InterpretedDFDChannel *A,
uint32_t *wordBytes);
/* Returns the string representation.
* If there is no direct match or the value is invalid returns NULL */
const char* dfdToStringVendorID(khr_df_vendorid_e value);
/* Returns the string representation.
* If there is no direct match or the value is invalid returns NULL */
const char* dfdToStringDescriptorType(khr_df_khr_descriptortype_e value);
/* Returns the string representation.
* If there is no direct match or the value is invalid returns NULL */
const char* dfdToStringVersionNumber(khr_df_versionnumber_e value);
/* Returns the string representation of a bit in a khr_df_flags_e.
* If there is no direct match or the value is invalid returns NULL */
const char* dfdToStringFlagsBit(uint32_t bit_index, bool bit_value);
/* Returns the string representation.
* If there is no direct match or the value is invalid returns NULL */
const char* dfdToStringTransferFunction(khr_df_transfer_e value);
/* Returns the string representation.
* If there is no direct match or the value is invalid returns NULL */
const char* dfdToStringColorPrimaries(khr_df_primaries_e value);
/* Returns the string representation.
* If there is no direct match or the value is invalid returns NULL */
const char* dfdToStringColorModel(khr_df_model_e value);
/* Returns the string representation of a bit in a khr_df_sample_datatype_qualifiers_e.
* If there is no direct match or the value is invalid returns NULL */
const char* dfdToStringSampleDatatypeQualifiersBit(uint32_t bit_index, bool bit_value);
/* Returns the string representation.
* If there is no direct match or the value is invalid returns NULL */
const char* dfdToStringChannelId(khr_df_model_e model, khr_df_model_channels_e value);
/* Print a human-readable interpretation of a data format descriptor. */
void printDFD(uint32_t *DFD, uint32_t dataSize);
/* Print a JSON interpretation of a data format descriptor. */
void printDFDJSON(uint32_t *DFD, uint32_t dataSize, uint32_t base_indent, uint32_t indent_width, bool minified);
/* Get the number of components & component size from a DFD for an
* unpacked format.
*/
void getDFDComponentInfoUnpacked(const uint32_t* DFD, uint32_t* numComponents,
uint32_t* componentByteLength);
/* Return the number of components described by a DFD. */
uint32_t getDFDNumComponents(const uint32_t* DFD);
/* Reconstruct and update the bytesPlane[0-4] fields of an unsized DFD to what
* they were before supercompression.
*/
void reconstructDFDBytesPlanesFromSamples(uint32_t* DFD);
/* Deprecated. For backward compatibility. */
uint32_t reconstructDFDBytesPlane0FromSamples(const uint32_t* DFD);
/* Deprecated. For backward compatibility. */
void recreateBytesPlane0FromSampleInfo(const uint32_t* DFD,
uint32_t* bytesPlane0);
/** @brief Colourspace primaries information.
*
* Structure to store the 1931 CIE x,y chromaticities of the red, green, and blue
* display primaries and the reference white point of a colourspace.
*/
typedef struct _Primaries {
float Rx; /*!< Red x. */
float Ry; /*!< Red y. */
float Gx; /*!< Green x. */
float Gy; /*!< Green y. */
float Bx; /*!< Blue x. */
float By; /*!< Blue y. */
float Wx; /*!< White x. */
float Wy; /*!< White y. */
} Primaries;
khr_df_primaries_e findMapping(const Primaries *p, float latitude);
bool getPrimaries(khr_df_primaries_e primaries, Primaries *p);
#ifdef __cplusplus
}
#endif
#endif /* _DFD_H_ */

View File

@@ -0,0 +1,663 @@
/* Copyright 2019-2020 The Khronos Group Inc. */
/* SPDX-License-Identifier: Apache-2.0 */
/***************************** Do not edit. *****************************
Automatically generated by makedfd2vk.pl.
*************************************************************************/
if (KHR_DFDVAL(dfd + 1, MODEL) == KHR_DF_MODEL_RGBSDA || KHR_DFDVAL(dfd + 1, MODEL) == KHR_DF_MODEL_YUVSDA) {
enum InterpretDFDResult r;
InterpretedDFDChannel R = {0,0};
InterpretedDFDChannel G = {0,0};
InterpretedDFDChannel B = {0,0};
InterpretedDFDChannel A = {0,0};
/* interpretDFD channel overloadings for YUVSDA formats. These are
* different from the mapping used by Vulkan. */
#define Y1 R
#define Y2 A
#define CB G
#define U G
#define CR B
#define V B
uint32_t wordBytes;
/* Special case exponent format */
if (KHR_DFDSAMPLECOUNT(dfd + 1) == 6 &&
((KHR_DFDSVAL((dfd + 1), 1, QUALIFIERS) & KHR_DF_SAMPLE_DATATYPE_EXPONENT) > 0)) {
/* The only format we expect to be encoded like this. */
return VK_FORMAT_E5B9G9R9_UFLOAT_PACK32;
}
/* Special case depth formats (assumed little-endian) */
if (KHR_DFDSVAL((dfd + 1), 0, CHANNELID) == KHR_DF_CHANNEL_RGBSDA_DEPTH) {
if (KHR_DFDSAMPLECOUNT((dfd + 1)) == 1) {
if (KHR_DFDSVAL((dfd + 1), 0, BITLENGTH) == 16-1) return VK_FORMAT_D16_UNORM;
if (KHR_DFDSVAL((dfd + 1), 0, BITLENGTH) == 24-1) return VK_FORMAT_X8_D24_UNORM_PACK32;
return VK_FORMAT_D32_SFLOAT;
} else {
if (KHR_DFDSVAL((dfd + 1), 0, BITLENGTH) == 16-1) return VK_FORMAT_D16_UNORM_S8_UINT;
if (KHR_DFDSVAL((dfd + 1), 0, BITLENGTH) == 24-1) return VK_FORMAT_D24_UNORM_S8_UINT;
return VK_FORMAT_D32_SFLOAT_S8_UINT;
}
}
if (KHR_DFDSVAL((dfd + 1), 0, CHANNELID) == KHR_DF_CHANNEL_RGBSDA_STENCIL) {
if (KHR_DFDSAMPLECOUNT((dfd + 1)) == 1) {
return VK_FORMAT_S8_UINT;
} else {
// The KTX 2.0 specification defines D24_UNORM_S8_UINT with S8 in the LSBs
return VK_FORMAT_D24_UNORM_S8_UINT;
}
}
r = interpretDFD(dfd, &R, &G, &B, &A, &wordBytes);
if (r & i_UNSUPPORTED_ERROR_BIT) return VK_FORMAT_UNDEFINED;
if (r & i_PACKED_FORMAT_BIT) {
if (wordBytes == 1) return VK_FORMAT_R4G4_UNORM_PACK8;
else if (wordBytes == 2) { /* PACK16 */
if (A.size == 4) {
if (R.offset == 12) return VK_FORMAT_R4G4B4A4_UNORM_PACK16;
else if (B.offset == 12) return VK_FORMAT_B4G4R4A4_UNORM_PACK16;
else if (A.offset == 12) {
if (R.offset == 8) return VK_FORMAT_A4R4G4B4_UNORM_PACK16;
else return VK_FORMAT_A4B4G4R4_UNORM_PACK16;
}
} else if (G.size == 0 && B.size == 0 && A.size == 0) { /* One channel */
if (R.size == 10)
return VK_FORMAT_R10X6_UNORM_PACK16;
else if (R.size ==12)
return VK_FORMAT_R12X4_UNORM_PACK16;
} else if (A.size == 0) { /* Three channels */
if (B.offset == 0) return VK_FORMAT_R5G6B5_UNORM_PACK16;
else return VK_FORMAT_B5G6R5_UNORM_PACK16;
} else { /* Four channels, one-bit alpha */
if (B.offset == 0) return VK_FORMAT_A1R5G5B5_UNORM_PACK16;
if (B.offset == 1) return VK_FORMAT_R5G5B5A1_UNORM_PACK16;
if (B.offset == 10) return VK_FORMAT_A1B5G5R5_UNORM_PACK16_KHR;
return VK_FORMAT_B5G5R5A1_UNORM_PACK16;
}
} else if (wordBytes == 4) { /* PACK32 or 2PACK16 */
if (A.size == 8) {
if ((r & i_SRGB_FORMAT_BIT)) return VK_FORMAT_A8B8G8R8_SRGB_PACK32;
if ((r & i_NORMALIZED_FORMAT_BIT) && !(r & i_SIGNED_FORMAT_BIT)) return VK_FORMAT_A8B8G8R8_UNORM_PACK32;
if ((r & i_NORMALIZED_FORMAT_BIT) && (r & i_SIGNED_FORMAT_BIT)) return VK_FORMAT_A8B8G8R8_SNORM_PACK32;
if (!(r & i_NORMALIZED_FORMAT_BIT) && !(r & i_SIGNED_FORMAT_BIT)) return VK_FORMAT_A8B8G8R8_UINT_PACK32;
if (!(r & i_NORMALIZED_FORMAT_BIT) && (r & i_SIGNED_FORMAT_BIT)) return VK_FORMAT_A8B8G8R8_SINT_PACK32;
} else if (A.size == 2 && B.offset == 0) {
if ((r & i_NORMALIZED_FORMAT_BIT) && !(r & i_SIGNED_FORMAT_BIT)) return VK_FORMAT_A2R10G10B10_UNORM_PACK32;
if ((r & i_NORMALIZED_FORMAT_BIT) && (r & i_SIGNED_FORMAT_BIT)) return VK_FORMAT_A2R10G10B10_SNORM_PACK32;
if (!(r & i_NORMALIZED_FORMAT_BIT) && !(r & i_SIGNED_FORMAT_BIT)) return VK_FORMAT_A2R10G10B10_UINT_PACK32;
if (!(r & i_NORMALIZED_FORMAT_BIT) && (r & i_SIGNED_FORMAT_BIT)) return VK_FORMAT_A2R10G10B10_SINT_PACK32;
} else if (A.size == 2 && R.offset == 0) {
if ((r & i_NORMALIZED_FORMAT_BIT) && !(r & i_SIGNED_FORMAT_BIT)) return VK_FORMAT_A2B10G10R10_UNORM_PACK32;
if ((r & i_NORMALIZED_FORMAT_BIT) && (r & i_SIGNED_FORMAT_BIT)) return VK_FORMAT_A2B10G10R10_SNORM_PACK32;
if (!(r & i_NORMALIZED_FORMAT_BIT) && !(r & i_SIGNED_FORMAT_BIT)) return VK_FORMAT_A2B10G10R10_UINT_PACK32;
if (!(r & i_NORMALIZED_FORMAT_BIT) && (r & i_SIGNED_FORMAT_BIT)) return VK_FORMAT_A2B10G10R10_SINT_PACK32;
} else if (R.size == 11) {
return VK_FORMAT_B10G11R11_UFLOAT_PACK32;
} else if (R.size == 10 && G.size == 10 && B.size == 0) {
return VK_FORMAT_R10X6G10X6_UNORM_2PACK16;
} else if (R.size == 12 && G.size == 12 && B.size == 0) {
return VK_FORMAT_R12X4G12X4_UNORM_2PACK16;
}
} else if (wordBytes == 8) { /* 4PACK16 */
if (r & i_YUVSDA_FORMAT_BIT) {
/* In Vulkan G = Y, R = Cr, B = Cb. */
if (Y1.size == 10 && Y1.offset == 6 && Y2.size == 10 && Y2.offset == 38)
return VK_FORMAT_G10X6B10X6G10X6R10X6_422_UNORM_4PACK16;
if (Y1.size == 10 && Y1.offset == 22 && Y2.size == 10 && Y2.offset == 54)
return VK_FORMAT_B10X6G10X6R10X6G10X6_422_UNORM_4PACK16;
if (Y1.size == 12 && Y1.offset == 4 && Y2.size == 12 && Y2.offset == 36)
return VK_FORMAT_G12X4B12X4G12X4R12X4_422_UNORM_4PACK16;
if (Y1.size == 12 && Y1.offset == 20 && Y2.size == 12 && Y2.offset == 52)
return VK_FORMAT_B12X4G12X4R12X4G12X4_422_UNORM_4PACK16;
} else {
if (R.size == 10)
return VK_FORMAT_R10X6G10X6B10X6A10X6_UNORM_4PACK16;
else if (R.size == 12)
return VK_FORMAT_R12X4G12X4B12X4A12X4_UNORM_4PACK16;
}
}
} else { /* Not a packed format */
if (r & i_YUVSDA_FORMAT_BIT) {
/* In Vulkan G = Y, R = Cr, B = Cb. */
if (Y1.size == 1 && Y1.offset == 0 && Y2.size == 1 && Y2.offset == 2)
return VK_FORMAT_G8B8G8R8_422_UNORM;
else if (Y1.size == 1 && Y1.offset == 1 && Y2.size == 1 && Y2.offset == 3)
return VK_FORMAT_B8G8R8G8_422_UNORM;
else if (Y1.size == 2 && Y1.offset == 0 && Y2.size == 2 && Y2.offset == 4)
return VK_FORMAT_G16B16G16R16_422_UNORM;
else if (Y1.size == 2 && Y1.offset == 2 && Y2.size == 2 && Y2.offset == 6)
return VK_FORMAT_B16G16R16G16_422_UNORM;
else
return VK_FORMAT_UNDEFINED; // Until support added.
} else { /* Not YUV */
if (wordBytes == 1) {
if (A.size == 1 && R.size == 0 && G.size == 0 && B.size == 0 && (r & i_NORMALIZED_FORMAT_BIT) && !(r & i_SIGNED_FORMAT_BIT)) {
return VK_FORMAT_A8_UNORM_KHR;
}
if (A.size > 0) { /* 4 channels */
if (R.offset == 0) { /* RGBA */
if ((r & i_SRGB_FORMAT_BIT)) return VK_FORMAT_R8G8B8A8_SRGB;
if ((r & i_NORMALIZED_FORMAT_BIT) && !(r & i_SIGNED_FORMAT_BIT)) return VK_FORMAT_R8G8B8A8_UNORM;
if ((r & i_NORMALIZED_FORMAT_BIT) && (r & i_SIGNED_FORMAT_BIT)) return VK_FORMAT_R8G8B8A8_SNORM;
if (!(r & i_NORMALIZED_FORMAT_BIT) && !(r & i_SIGNED_FORMAT_BIT)) return VK_FORMAT_R8G8B8A8_UINT;
if (!(r & i_NORMALIZED_FORMAT_BIT) && (r & i_SIGNED_FORMAT_BIT)) return VK_FORMAT_R8G8B8A8_SINT;
} else { /* BGRA */
if ((r & i_SRGB_FORMAT_BIT)) return VK_FORMAT_B8G8R8A8_SRGB;
if ((r & i_NORMALIZED_FORMAT_BIT) && !(r & i_SIGNED_FORMAT_BIT)) return VK_FORMAT_B8G8R8A8_UNORM;
if ((r & i_NORMALIZED_FORMAT_BIT) && (r & i_SIGNED_FORMAT_BIT)) return VK_FORMAT_B8G8R8A8_SNORM;
if (!(r & i_NORMALIZED_FORMAT_BIT) && !(r & i_SIGNED_FORMAT_BIT)) return VK_FORMAT_B8G8R8A8_UINT;
if (!(r & i_NORMALIZED_FORMAT_BIT) && (r & i_SIGNED_FORMAT_BIT)) return VK_FORMAT_B8G8R8A8_SINT;
}
} else if (B.size > 0) { /* 3 channels */
if (R.offset == 0) { /* RGB */
if ((r & i_SRGB_FORMAT_BIT)) return VK_FORMAT_R8G8B8_SRGB;
if ((r & i_NORMALIZED_FORMAT_BIT) && !(r & i_SIGNED_FORMAT_BIT)) return VK_FORMAT_R8G8B8_UNORM;
if ((r & i_NORMALIZED_FORMAT_BIT) && (r & i_SIGNED_FORMAT_BIT)) return VK_FORMAT_R8G8B8_SNORM;
if (!(r & i_NORMALIZED_FORMAT_BIT) && !(r & i_SIGNED_FORMAT_BIT)) return VK_FORMAT_R8G8B8_UINT;
if (!(r & i_NORMALIZED_FORMAT_BIT) && (r & i_SIGNED_FORMAT_BIT)) return VK_FORMAT_R8G8B8_SINT;
} else { /* BGR */
if ((r & i_SRGB_FORMAT_BIT)) return VK_FORMAT_B8G8R8_SRGB;
if ((r & i_NORMALIZED_FORMAT_BIT) && !(r & i_SIGNED_FORMAT_BIT)) return VK_FORMAT_B8G8R8_UNORM;
if ((r & i_NORMALIZED_FORMAT_BIT) && (r & i_SIGNED_FORMAT_BIT)) return VK_FORMAT_B8G8R8_SNORM;
if (!(r & i_NORMALIZED_FORMAT_BIT) && !(r & i_SIGNED_FORMAT_BIT)) return VK_FORMAT_B8G8R8_UINT;
if (!(r & i_NORMALIZED_FORMAT_BIT) && (r & i_SIGNED_FORMAT_BIT)) return VK_FORMAT_B8G8R8_SINT;
}
} else if (G.size > 0) { /* 2 channels */
if ((r & i_SRGB_FORMAT_BIT)) return VK_FORMAT_R8G8_SRGB;
if ((r & i_NORMALIZED_FORMAT_BIT) && !(r & i_SIGNED_FORMAT_BIT)) return VK_FORMAT_R8G8_UNORM;
if ((r & i_NORMALIZED_FORMAT_BIT) && (r & i_SIGNED_FORMAT_BIT)) return VK_FORMAT_R8G8_SNORM;
if (!(r & i_NORMALIZED_FORMAT_BIT) && !(r & i_SIGNED_FORMAT_BIT)) return VK_FORMAT_R8G8_UINT;
if (!(r & i_NORMALIZED_FORMAT_BIT) && (r & i_SIGNED_FORMAT_BIT)) return VK_FORMAT_R8G8_SINT;
} else { /* 1 channel */
if ((r & i_SRGB_FORMAT_BIT)) return VK_FORMAT_R8_SRGB;
if ((r & i_NORMALIZED_FORMAT_BIT) && !(r & i_SIGNED_FORMAT_BIT)) return VK_FORMAT_R8_UNORM;
if ((r & i_NORMALIZED_FORMAT_BIT) && (r & i_SIGNED_FORMAT_BIT)) return VK_FORMAT_R8_SNORM;
if (!(r & i_NORMALIZED_FORMAT_BIT) && !(r & i_SIGNED_FORMAT_BIT)) return VK_FORMAT_R8_UINT;
if (!(r & i_NORMALIZED_FORMAT_BIT) && (r & i_SIGNED_FORMAT_BIT)) return VK_FORMAT_R8_SINT;
}
} else if (wordBytes == 2) {
if ((r & i_FIXED_FORMAT_BIT) && R.size == 2 && G.size == 2) return VK_FORMAT_R16G16_SFIXED5_NV;
if (A.size > 0) { /* 4 channels */
if (R.offset == 0) { /* RGBA */
if ((r & i_FLOAT_FORMAT_BIT)) return VK_FORMAT_R16G16B16A16_SFLOAT;
if ((r & i_NORMALIZED_FORMAT_BIT) && !(r & i_SIGNED_FORMAT_BIT)) return VK_FORMAT_R16G16B16A16_UNORM;
if ((r & i_NORMALIZED_FORMAT_BIT) && (r & i_SIGNED_FORMAT_BIT)) return VK_FORMAT_R16G16B16A16_SNORM;
if (!(r & i_NORMALIZED_FORMAT_BIT) && !(r & i_SIGNED_FORMAT_BIT)) return VK_FORMAT_R16G16B16A16_UINT;
if (!(r & i_NORMALIZED_FORMAT_BIT) && (r & i_SIGNED_FORMAT_BIT)) return VK_FORMAT_R16G16B16A16_SINT;
} else { /* BGRA */
}
} else if (B.size > 0) { /* 3 channels */
if (R.offset == 0) { /* RGB */
if ((r & i_FLOAT_FORMAT_BIT)) return VK_FORMAT_R16G16B16_SFLOAT;
if ((r & i_NORMALIZED_FORMAT_BIT) && !(r & i_SIGNED_FORMAT_BIT)) return VK_FORMAT_R16G16B16_UNORM;
if ((r & i_NORMALIZED_FORMAT_BIT) && (r & i_SIGNED_FORMAT_BIT)) return VK_FORMAT_R16G16B16_SNORM;
if (!(r & i_NORMALIZED_FORMAT_BIT) && !(r & i_SIGNED_FORMAT_BIT)) return VK_FORMAT_R16G16B16_UINT;
if (!(r & i_NORMALIZED_FORMAT_BIT) && (r & i_SIGNED_FORMAT_BIT)) return VK_FORMAT_R16G16B16_SINT;
} else { /* BGR */
}
} else if (G.size > 0) { /* 2 channels */
if ((r & i_FLOAT_FORMAT_BIT)) return VK_FORMAT_R16G16_SFLOAT;
if ((r & i_NORMALIZED_FORMAT_BIT) && !(r & i_SIGNED_FORMAT_BIT)) return VK_FORMAT_R16G16_UNORM;
if ((r & i_NORMALIZED_FORMAT_BIT) && (r & i_SIGNED_FORMAT_BIT)) return VK_FORMAT_R16G16_SNORM;
if (!(r & i_NORMALIZED_FORMAT_BIT) && !(r & i_SIGNED_FORMAT_BIT)) return VK_FORMAT_R16G16_UINT;
if (!(r & i_NORMALIZED_FORMAT_BIT) && (r & i_SIGNED_FORMAT_BIT)) return VK_FORMAT_R16G16_SINT;
} else { /* 1 channel */
if ((r & i_FLOAT_FORMAT_BIT)) return VK_FORMAT_R16_SFLOAT;
if ((r & i_NORMALIZED_FORMAT_BIT) && !(r & i_SIGNED_FORMAT_BIT)) return VK_FORMAT_R16_UNORM;
if ((r & i_NORMALIZED_FORMAT_BIT) && (r & i_SIGNED_FORMAT_BIT)) return VK_FORMAT_R16_SNORM;
if (!(r & i_NORMALIZED_FORMAT_BIT) && !(r & i_SIGNED_FORMAT_BIT)) return VK_FORMAT_R16_UINT;
if (!(r & i_NORMALIZED_FORMAT_BIT) && (r & i_SIGNED_FORMAT_BIT)) return VK_FORMAT_R16_SINT;
}
} else if (wordBytes == 4) {
if (A.size > 0) { /* 4 channels */
if (R.offset == 0) { /* RGBA */
if ((r & i_FLOAT_FORMAT_BIT)) return VK_FORMAT_R32G32B32A32_SFLOAT;
if (!(r & i_NORMALIZED_FORMAT_BIT) && !(r & i_SIGNED_FORMAT_BIT)) return VK_FORMAT_R32G32B32A32_UINT;
if (!(r & i_NORMALIZED_FORMAT_BIT) && (r & i_SIGNED_FORMAT_BIT)) return VK_FORMAT_R32G32B32A32_SINT;
} else { /* BGRA */
}
} else if (B.size > 0) { /* 3 channels */
if (R.offset == 0) { /* RGB */
if ((r & i_FLOAT_FORMAT_BIT)) return VK_FORMAT_R32G32B32_SFLOAT;
if (!(r & i_NORMALIZED_FORMAT_BIT) && !(r & i_SIGNED_FORMAT_BIT)) return VK_FORMAT_R32G32B32_UINT;
if (!(r & i_NORMALIZED_FORMAT_BIT) && (r & i_SIGNED_FORMAT_BIT)) return VK_FORMAT_R32G32B32_SINT;
} else { /* BGR */
}
} else if (G.size > 0) { /* 2 channels */
if ((r & i_FLOAT_FORMAT_BIT)) return VK_FORMAT_R32G32_SFLOAT;
if (!(r & i_NORMALIZED_FORMAT_BIT) && !(r & i_SIGNED_FORMAT_BIT)) return VK_FORMAT_R32G32_UINT;
if (!(r & i_NORMALIZED_FORMAT_BIT) && (r & i_SIGNED_FORMAT_BIT)) return VK_FORMAT_R32G32_SINT;
} else { /* 1 channel */
if ((r & i_FLOAT_FORMAT_BIT)) return VK_FORMAT_R32_SFLOAT;
if (!(r & i_NORMALIZED_FORMAT_BIT) && !(r & i_SIGNED_FORMAT_BIT)) return VK_FORMAT_R32_UINT;
if (!(r & i_NORMALIZED_FORMAT_BIT) && (r & i_SIGNED_FORMAT_BIT)) return VK_FORMAT_R32_SINT;
}
} else if (wordBytes == 8) {
if (A.size > 0) { /* 4 channels */
if (R.offset == 0) { /* RGBA */
if ((r & i_FLOAT_FORMAT_BIT)) return VK_FORMAT_R64G64B64A64_SFLOAT;
if (!(r & i_NORMALIZED_FORMAT_BIT) && !(r & i_SIGNED_FORMAT_BIT)) return VK_FORMAT_R64G64B64A64_UINT;
if (!(r & i_NORMALIZED_FORMAT_BIT) && (r & i_SIGNED_FORMAT_BIT)) return VK_FORMAT_R64G64B64A64_SINT;
} else { /* BGRA */
}
} else if (B.size > 0) { /* 3 channels */
if (R.offset == 0) { /* RGB */
if ((r & i_FLOAT_FORMAT_BIT)) return VK_FORMAT_R64G64B64_SFLOAT;
if (!(r & i_NORMALIZED_FORMAT_BIT) && !(r & i_SIGNED_FORMAT_BIT)) return VK_FORMAT_R64G64B64_UINT;
if (!(r & i_NORMALIZED_FORMAT_BIT) && (r & i_SIGNED_FORMAT_BIT)) return VK_FORMAT_R64G64B64_SINT;
} else { /* BGR */
}
} else if (G.size > 0) { /* 2 channels */
if ((r & i_FLOAT_FORMAT_BIT)) return VK_FORMAT_R64G64_SFLOAT;
if (!(r & i_NORMALIZED_FORMAT_BIT) && !(r & i_SIGNED_FORMAT_BIT)) return VK_FORMAT_R64G64_UINT;
if (!(r & i_NORMALIZED_FORMAT_BIT) && (r & i_SIGNED_FORMAT_BIT)) return VK_FORMAT_R64G64_SINT;
} else { /* 1 channel */
if ((r & i_FLOAT_FORMAT_BIT)) return VK_FORMAT_R64_SFLOAT;
if (!(r & i_NORMALIZED_FORMAT_BIT) && !(r & i_SIGNED_FORMAT_BIT)) return VK_FORMAT_R64_UINT;
if (!(r & i_NORMALIZED_FORMAT_BIT) && (r & i_SIGNED_FORMAT_BIT)) return VK_FORMAT_R64_SINT;
}
}
}
}
} else if (KHR_DFDVAL((dfd + 1), MODEL) >= 128) {
const uint32_t *bdb = dfd + 1;
switch (KHR_DFDVAL(bdb, MODEL)) {
case KHR_DF_MODEL_BC1A:
if (KHR_DFDSVAL(bdb, 0, CHANNELID) == KHR_DF_CHANNEL_BC1A_COLOR) {
if (KHR_DFDVAL(bdb, TRANSFER) != KHR_DF_TRANSFER_SRGB) {
return VK_FORMAT_BC1_RGB_UNORM_BLOCK;
} else {
return VK_FORMAT_BC1_RGB_SRGB_BLOCK;
}
} else {
if (KHR_DFDVAL(bdb, TRANSFER) != KHR_DF_TRANSFER_SRGB) {
return VK_FORMAT_BC1_RGBA_UNORM_BLOCK;
} else {
return VK_FORMAT_BC1_RGBA_SRGB_BLOCK;
}
}
case KHR_DF_MODEL_BC2:
if (KHR_DFDVAL(bdb, TRANSFER) != KHR_DF_TRANSFER_SRGB) {
return VK_FORMAT_BC2_UNORM_BLOCK;
} else {
return VK_FORMAT_BC2_SRGB_BLOCK;
}
case KHR_DF_MODEL_BC3:
if (KHR_DFDVAL(bdb, TRANSFER) != KHR_DF_TRANSFER_SRGB) {
return VK_FORMAT_BC3_UNORM_BLOCK;
} else {
return VK_FORMAT_BC3_SRGB_BLOCK;
}
case KHR_DF_MODEL_BC4:
if (!(KHR_DFDSVAL(bdb, 0, QUALIFIERS) & KHR_DF_SAMPLE_DATATYPE_SIGNED)) {
return VK_FORMAT_BC4_UNORM_BLOCK;
} else {
return VK_FORMAT_BC4_SNORM_BLOCK;
}
case KHR_DF_MODEL_BC5:
if (!(KHR_DFDSVAL(bdb, 0, QUALIFIERS) & KHR_DF_SAMPLE_DATATYPE_SIGNED)) {
return VK_FORMAT_BC5_UNORM_BLOCK;
} else {
return VK_FORMAT_BC5_SNORM_BLOCK;
}
case KHR_DF_MODEL_BC6H:
if (!(KHR_DFDSVAL(bdb, 0, QUALIFIERS) & KHR_DF_SAMPLE_DATATYPE_SIGNED)) {
return VK_FORMAT_BC6H_UFLOAT_BLOCK;
} else {
return VK_FORMAT_BC6H_SFLOAT_BLOCK;
}
case KHR_DF_MODEL_BC7:
if (KHR_DFDVAL(bdb, TRANSFER) != KHR_DF_TRANSFER_SRGB) {
return VK_FORMAT_BC7_UNORM_BLOCK;
} else {
return VK_FORMAT_BC7_SRGB_BLOCK;
}
case KHR_DF_MODEL_ETC2:
if (KHR_DFDSVAL(bdb, 0, CHANNELID) == KHR_DF_CHANNEL_ETC2_COLOR) {
if (KHR_DFDVAL(bdb, DESCRIPTORBLOCKSIZE) == 40) {
if (KHR_DFDVAL(bdb, TRANSFER) != KHR_DF_TRANSFER_SRGB) {
return VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK;
} else {
return VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK;
}
} else {
if (KHR_DFDVAL(bdb, TRANSFER) != KHR_DF_TRANSFER_SRGB) {
return VK_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK;
} else {
return VK_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK;
}
}
} else if (KHR_DFDSVAL(bdb, 0, CHANNELID) == KHR_DF_CHANNEL_ETC2_ALPHA) {
if (KHR_DFDVAL(bdb, TRANSFER) != KHR_DF_TRANSFER_SRGB) {
return VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK;
} else {
return VK_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK;
}
} else if (KHR_DFDVAL(bdb, DESCRIPTORBLOCKSIZE) == 40) {
if (!(KHR_DFDSVAL(bdb, 0, QUALIFIERS) & KHR_DF_SAMPLE_DATATYPE_SIGNED)) {
return VK_FORMAT_EAC_R11_UNORM_BLOCK;
} else {
return VK_FORMAT_EAC_R11_SNORM_BLOCK;
}
} else {
if (!(KHR_DFDSVAL(bdb, 0, QUALIFIERS) & KHR_DF_SAMPLE_DATATYPE_SIGNED)) {
return VK_FORMAT_EAC_R11G11_UNORM_BLOCK;
} else {
return VK_FORMAT_EAC_R11G11_SNORM_BLOCK;
}
}
case KHR_DF_MODEL_ASTC:
if (!(KHR_DFDSVAL(bdb, 0, QUALIFIERS) & KHR_DF_SAMPLE_DATATYPE_FLOAT)) {
if (KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION2) == 0) {
if ((KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION0) == 3) &&
(KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION1) == 3)) {
if (KHR_DFDVAL(bdb, TRANSFER) != KHR_DF_TRANSFER_SRGB) {
return VK_FORMAT_ASTC_4x4_UNORM_BLOCK;
} else {
return VK_FORMAT_ASTC_4x4_SRGB_BLOCK;
}
} else if ((KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION0) == 4) &&
(KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION1) == 3)) {
if (KHR_DFDVAL(bdb, TRANSFER) != KHR_DF_TRANSFER_SRGB) {
return VK_FORMAT_ASTC_5x4_UNORM_BLOCK;
} else {
return VK_FORMAT_ASTC_5x4_SRGB_BLOCK;
}
} else if ((KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION0) == 4) &&
(KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION1) == 4)) {
if (KHR_DFDVAL(bdb, TRANSFER) != KHR_DF_TRANSFER_SRGB) {
return VK_FORMAT_ASTC_5x5_UNORM_BLOCK;
} else {
return VK_FORMAT_ASTC_5x5_SRGB_BLOCK;
}
} else if ((KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION0) == 5) &&
(KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION1) == 4)) {
if (KHR_DFDVAL(bdb, TRANSFER) != KHR_DF_TRANSFER_SRGB) {
return VK_FORMAT_ASTC_6x5_UNORM_BLOCK;
} else {
return VK_FORMAT_ASTC_6x5_SRGB_BLOCK;
}
} else if ((KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION0) == 5) &&
(KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION1) == 5)) {
if (KHR_DFDVAL(bdb, TRANSFER) != KHR_DF_TRANSFER_SRGB) {
return VK_FORMAT_ASTC_6x6_UNORM_BLOCK;
} else {
return VK_FORMAT_ASTC_6x6_SRGB_BLOCK;
}
} else if ((KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION0) == 7) &&
(KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION1) == 4)) {
if (KHR_DFDVAL(bdb, TRANSFER) != KHR_DF_TRANSFER_SRGB) {
return VK_FORMAT_ASTC_8x5_UNORM_BLOCK;
} else {
return VK_FORMAT_ASTC_8x5_SRGB_BLOCK;
}
} else if ((KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION0) == 7) &&
(KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION1) == 5)) {
if (KHR_DFDVAL(bdb, TRANSFER) != KHR_DF_TRANSFER_SRGB) {
return VK_FORMAT_ASTC_8x6_UNORM_BLOCK;
} else {
return VK_FORMAT_ASTC_8x6_SRGB_BLOCK;
}
} else if ((KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION0) == 7) &&
(KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION1) == 7)) {
if (KHR_DFDVAL(bdb, TRANSFER) != KHR_DF_TRANSFER_SRGB) {
return VK_FORMAT_ASTC_8x8_UNORM_BLOCK;
} else {
return VK_FORMAT_ASTC_8x8_SRGB_BLOCK;
}
} else if ((KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION0) == 9) &&
(KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION1) == 4)) {
if (KHR_DFDVAL(bdb, TRANSFER) != KHR_DF_TRANSFER_SRGB) {
return VK_FORMAT_ASTC_10x5_UNORM_BLOCK;
} else {
return VK_FORMAT_ASTC_10x5_SRGB_BLOCK;
}
} else if ((KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION0) == 9) &&
(KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION1) == 5)) {
if (KHR_DFDVAL(bdb, TRANSFER) != KHR_DF_TRANSFER_SRGB) {
return VK_FORMAT_ASTC_10x6_UNORM_BLOCK;
} else {
return VK_FORMAT_ASTC_10x6_SRGB_BLOCK;
}
} else if ((KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION0) == 9) &&
(KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION1) == 7)) {
if (KHR_DFDVAL(bdb, TRANSFER) != KHR_DF_TRANSFER_SRGB) {
return VK_FORMAT_ASTC_10x8_UNORM_BLOCK;
} else {
return VK_FORMAT_ASTC_10x8_SRGB_BLOCK;
}
} else if ((KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION0) == 9) &&
(KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION1) == 9)) {
if (KHR_DFDVAL(bdb, TRANSFER) != KHR_DF_TRANSFER_SRGB) {
return VK_FORMAT_ASTC_10x10_UNORM_BLOCK;
} else {
return VK_FORMAT_ASTC_10x10_SRGB_BLOCK;
}
} else if ((KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION0) == 11) &&
(KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION1) == 9)) {
if (KHR_DFDVAL(bdb, TRANSFER) != KHR_DF_TRANSFER_SRGB) {
return VK_FORMAT_ASTC_12x10_UNORM_BLOCK;
} else {
return VK_FORMAT_ASTC_12x10_SRGB_BLOCK;
}
} else if ((KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION0) == 11) &&
(KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION1) == 11)) {
if (KHR_DFDVAL(bdb, TRANSFER) != KHR_DF_TRANSFER_SRGB) {
return VK_FORMAT_ASTC_12x12_UNORM_BLOCK;
} else {
return VK_FORMAT_ASTC_12x12_SRGB_BLOCK;
}
}
} else {
if ((KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION0) == 2) &&
(KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION1) == 2) &&
(KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION2) == 2)) {
if (KHR_DFDVAL(bdb, TRANSFER) != KHR_DF_TRANSFER_SRGB) {
return VK_FORMAT_ASTC_3x3x3_UNORM_BLOCK_EXT;
} else {
return VK_FORMAT_ASTC_3x3x3_SRGB_BLOCK_EXT;
}
} else if ((KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION0) == 3) &&
(KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION1) == 2) &&
(KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION2) == 2)) {
if (KHR_DFDVAL(bdb, TRANSFER) != KHR_DF_TRANSFER_SRGB) {
return VK_FORMAT_ASTC_4x3x3_UNORM_BLOCK_EXT;
} else {
return VK_FORMAT_ASTC_4x3x3_SRGB_BLOCK_EXT;
}
} else if ((KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION0) == 3) &&
(KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION1) == 3) &&
(KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION2) == 2)) {
if (KHR_DFDVAL(bdb, TRANSFER) != KHR_DF_TRANSFER_SRGB) {
return VK_FORMAT_ASTC_4x4x3_UNORM_BLOCK_EXT;
} else {
return VK_FORMAT_ASTC_4x4x3_SRGB_BLOCK_EXT;
}
} else if ((KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION0) == 3) &&
(KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION1) == 3) &&
(KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION2) == 3)) {
if (KHR_DFDVAL(bdb, TRANSFER) != KHR_DF_TRANSFER_SRGB) {
return VK_FORMAT_ASTC_4x4x4_UNORM_BLOCK_EXT;
} else {
return VK_FORMAT_ASTC_4x4x4_SRGB_BLOCK_EXT;
}
}
if ((KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION0) == 4) &&
(KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION1) == 3) &&
(KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION2) == 3)) {
if (KHR_DFDVAL(bdb, TRANSFER) != KHR_DF_TRANSFER_SRGB) {
return VK_FORMAT_ASTC_5x4x4_UNORM_BLOCK_EXT;
} else {
return VK_FORMAT_ASTC_5x4x4_SRGB_BLOCK_EXT;
}
} else if ((KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION0) == 4) &&
(KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION1) == 4) &&
(KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION2) == 3)) {
if (KHR_DFDVAL(bdb, TRANSFER) != KHR_DF_TRANSFER_SRGB) {
return VK_FORMAT_ASTC_5x5x4_UNORM_BLOCK_EXT;
} else {
return VK_FORMAT_ASTC_5x5x4_SRGB_BLOCK_EXT;
}
} else if ((KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION0) == 4) &&
(KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION1) == 4) &&
(KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION2) == 4)) {
if (KHR_DFDVAL(bdb, TRANSFER) != KHR_DF_TRANSFER_SRGB) {
return VK_FORMAT_ASTC_5x5x5_UNORM_BLOCK_EXT;
} else {
return VK_FORMAT_ASTC_5x5x5_SRGB_BLOCK_EXT;
}
} else if ((KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION0) == 5) &&
(KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION1) == 4) &&
(KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION2) == 4)) {
if (KHR_DFDVAL(bdb, TRANSFER) != KHR_DF_TRANSFER_SRGB) {
return VK_FORMAT_ASTC_6x5x5_UNORM_BLOCK_EXT;
} else {
return VK_FORMAT_ASTC_6x5x5_SRGB_BLOCK_EXT;
}
} else if ((KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION0) == 5) &&
(KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION1) == 5) &&
(KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION2) == 4)) {
if (KHR_DFDVAL(bdb, TRANSFER) != KHR_DF_TRANSFER_SRGB) {
return VK_FORMAT_ASTC_6x6x5_UNORM_BLOCK_EXT;
} else {
return VK_FORMAT_ASTC_6x6x5_SRGB_BLOCK_EXT;
}
} else if ((KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION0) == 5) &&
(KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION1) == 5) &&
(KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION2) == 5)) {
if (KHR_DFDVAL(bdb, TRANSFER) != KHR_DF_TRANSFER_SRGB) {
return VK_FORMAT_ASTC_6x6x6_UNORM_BLOCK_EXT;
} else {
return VK_FORMAT_ASTC_6x6x6_SRGB_BLOCK_EXT;
}
}
}
} else {
if (KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION2) == 0) {
if ((KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION0) == 3) &&
(KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION1) == 3)) {
return VK_FORMAT_ASTC_4x4_SFLOAT_BLOCK_EXT;
} else if ((KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION0) == 4) &&
(KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION1) == 3)) {
return VK_FORMAT_ASTC_5x4_SFLOAT_BLOCK_EXT;
} else if ((KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION0) == 4) &&
(KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION1) == 4)) {
return VK_FORMAT_ASTC_5x5_SFLOAT_BLOCK_EXT;
} else if ((KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION0) == 5) &&
(KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION1) == 4)) {
return VK_FORMAT_ASTC_6x5_SFLOAT_BLOCK_EXT;
} else if ((KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION0) == 5) &&
(KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION1) == 5)) {
return VK_FORMAT_ASTC_6x6_SFLOAT_BLOCK_EXT;
} else if ((KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION0) == 7) &&
(KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION1) == 4)) {
return VK_FORMAT_ASTC_8x5_SFLOAT_BLOCK_EXT;
} else if ((KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION0) == 7) &&
(KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION1) == 5)) {
return VK_FORMAT_ASTC_8x6_SFLOAT_BLOCK_EXT;
} else if ((KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION0) == 7) &&
(KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION1) == 7)) {
return VK_FORMAT_ASTC_8x8_SFLOAT_BLOCK_EXT;
} else if ((KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION0) == 9) &&
(KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION1) == 4)) {
return VK_FORMAT_ASTC_10x5_SFLOAT_BLOCK_EXT;
} else if ((KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION0) == 9) &&
(KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION1) == 5)) {
return VK_FORMAT_ASTC_10x6_SFLOAT_BLOCK_EXT;
} else if ((KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION0) == 9) &&
(KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION1) == 7)) {
return VK_FORMAT_ASTC_10x8_SFLOAT_BLOCK_EXT;
} else if ((KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION0) == 9) &&
(KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION1) == 9)) {
return VK_FORMAT_ASTC_10x10_SFLOAT_BLOCK_EXT;
} else if ((KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION0) == 11) &&
(KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION1) == 9)) {
return VK_FORMAT_ASTC_12x10_SFLOAT_BLOCK_EXT;
} else if ((KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION0) == 11) &&
(KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION1) == 11)) {
return VK_FORMAT_ASTC_12x12_SFLOAT_BLOCK_EXT;
}
} else {
if ((KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION0) == 2) &&
(KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION1) == 2) &&
(KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION2) == 2)) {
return VK_FORMAT_ASTC_3x3x3_SFLOAT_BLOCK_EXT;
} else if ((KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION0) == 3) &&
(KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION1) == 2) &&
(KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION2) == 2)) {
return VK_FORMAT_ASTC_4x3x3_SFLOAT_BLOCK_EXT;
} else if ((KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION0) == 3) &&
(KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION1) == 2) &&
(KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION2) == 2)) {
return VK_FORMAT_ASTC_4x3x3_SFLOAT_BLOCK_EXT;
} else if ((KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION0) == 3) &&
(KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION1) == 3) &&
(KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION2) == 2)) {
return VK_FORMAT_ASTC_4x4x3_SFLOAT_BLOCK_EXT;
} else if ((KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION0) == 3) &&
(KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION1) == 3) &&
(KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION2) == 3)) {
return VK_FORMAT_ASTC_4x4x4_SFLOAT_BLOCK_EXT;
} else if ((KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION0) == 4) &&
(KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION1) == 3) &&
(KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION2) == 3)) {
return VK_FORMAT_ASTC_5x4x4_SFLOAT_BLOCK_EXT;
} else if ((KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION0) == 4) &&
(KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION1) == 4) &&
(KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION2) == 3)) {
return VK_FORMAT_ASTC_5x5x4_SFLOAT_BLOCK_EXT;
} else if ((KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION0) == 4) &&
(KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION1) == 4) &&
(KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION2) == 4)) {
return VK_FORMAT_ASTC_5x5x5_SFLOAT_BLOCK_EXT;
} else if ((KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION0) == 5) &&
(KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION1) == 4) &&
(KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION2) == 4)) {
return VK_FORMAT_ASTC_6x5x5_SFLOAT_BLOCK_EXT;
} else if ((KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION0) == 5) &&
(KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION1) == 5) &&
(KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION2) == 4)) {
return VK_FORMAT_ASTC_6x6x5_SFLOAT_BLOCK_EXT;
} else if ((KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION0) == 5) &&
(KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION1) == 5) &&
(KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION2) == 5)) {
return VK_FORMAT_ASTC_6x6x6_SFLOAT_BLOCK_EXT;
}
}
}
break;
case KHR_DF_MODEL_PVRTC:
if (KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION0) == 3) {
if (KHR_DFDVAL(bdb, TRANSFER) == KHR_DF_TRANSFER_SRGB) {
return VK_FORMAT_PVRTC1_4BPP_SRGB_BLOCK_IMG;
} else {
return VK_FORMAT_PVRTC1_4BPP_UNORM_BLOCK_IMG;
}
} else {
if (KHR_DFDVAL(bdb, TRANSFER) == KHR_DF_TRANSFER_SRGB) {
return VK_FORMAT_PVRTC1_2BPP_SRGB_BLOCK_IMG;
} else {
return VK_FORMAT_PVRTC1_2BPP_UNORM_BLOCK_IMG;
}
}
case KHR_DF_MODEL_PVRTC2:
if (KHR_DFDVAL(bdb, TEXELBLOCKDIMENSION0) == 3) {
if (KHR_DFDVAL(bdb, TRANSFER) == KHR_DF_TRANSFER_SRGB) {
return VK_FORMAT_PVRTC2_4BPP_SRGB_BLOCK_IMG;
} else {
return VK_FORMAT_PVRTC2_4BPP_UNORM_BLOCK_IMG;
}
} else {
if (KHR_DFDVAL(bdb, TRANSFER) == KHR_DF_TRANSFER_SRGB) {
return VK_FORMAT_PVRTC2_2BPP_SRGB_BLOCK_IMG;
} else {
return VK_FORMAT_PVRTC2_2BPP_UNORM_BLOCK_IMG;
}
}
default:
;
}
}
return VK_FORMAT_UNDEFINED; /* Drop-through for unmatched formats. */

View File

@@ -0,0 +1,460 @@
/* -*- tab-width: 4; -*- */
/* vi: set sw=2 ts=4 expandtab: */
/* Copyright 2019-2020 The Khronos Group Inc.
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @file
* @~English
* @brief Utility for interpreting a data format descriptor.
* @author Andrew Garrard
*/
#include <stdint.h>
#include <stdio.h>
#include <KHR/khr_df.h>
#include "dfd.h"
static uint32_t bit_ceil(uint32_t x) {
x -= 1;
for (uint32_t i = 0; i < sizeof(x) * 8; ++i)
if (1u << i > x)
return 1u << i;
return 0;
}
/**
* @~English
* @brief Interpret a Data Format Descriptor for a simple format.
*
* Handles "simple" cases that can be translated to things a GPU can access.
* For simplicity, it ignores the compressed formats, which are generally a
* single sample (and I believe are all defined to be little-endian in their
* in-memory layout, even if some documentation confuses this). Focuses on
* the layout and ignores sRGB except for reporting if that is the transfer
* function by way of a bit in the returned value.
*
* @param[in] DFD Pointer to a Data Format Descriptor to interpret,
* described as 32-bit words in native endianness.
* Note that this is the whole descriptor, not just
* the basic descriptor block.
* @param R[in,out] Pointer to struct to receive information about the decoded
* red channel, the Y channel, if YUV, or the depth channel,
* if any.
* @param G[in,out] Pointer to struct to receive information about the decoded
* green channel, the U (Cb) channel, if YUV, or the stencil
* channel, if any.
* @param B[in,out] Pointer to struct to receive information about the decoded
* blue channel, if any or the V (Cr) channel, if YUV.
* @param A[in,out] Pointer to struct to receive information about the decoded
* alpha channel, if any or the second Y channel, if YUV and
* any.
* @param wordBytes[in,out] Pointer to a uint32_t to receive the byte size of
* the channels (unpacked) or total size (packed).
*
* @return An enumerant describing the decoded value,
* or an error code in case of failure.
*
* The mapping of YUV channels to the parameter names used here is based on
* the channel ids in @c khr_df.h and is different from the convention used
* in format names in the Vulkan specification where G == Y, R = Cr and B = Cb.
**/
enum InterpretDFDResult interpretDFD(const uint32_t *DFD,
InterpretedDFDChannel *R,
InterpretedDFDChannel *G,
InterpretedDFDChannel *B,
InterpretedDFDChannel *A,
uint32_t *wordBytes)
{
/* DFD points to the whole descriptor, not the basic descriptor block. */
/* Make everything else relative to the basic descriptor block. */
const uint32_t *BDFDB = DFD+1;
uint32_t numSamples = KHR_DFDSAMPLECOUNT(BDFDB);
if (numSamples == 0)
return i_UNSUPPORTED_CHANNEL_TYPES;
int determinedEndianness = 0;
enum InterpretDFDResult result = 0; /* Build this up incrementally. */
bool isDepthStencil = false;
/* Clear these so following code doesn't get confused. */
R->offset = R->size = 0;
G->offset = G->size = 0;
B->offset = B->size = 0;
A->offset = A->size = 0;
/* First rule out the multiple planes case (trivially) */
/* - that is, we check that only bytesPlane0 is non-zero. */
/* This means we don't handle multi-plane YUV, even if the API could. */
/* (We rely on KHR_DF_WORD_BYTESPLANE0..3 being the same and */
/* KHR_DF_WORD_BYTESPLANE4..7 being the same as a short cut.) */
if ((BDFDB[KHR_DF_WORD_BYTESPLANE0] & ~KHR_DF_MASK_BYTESPLANE0)
|| BDFDB[KHR_DF_WORD_BYTESPLANE4]) return i_UNSUPPORTED_MULTIPLE_PLANES;
/* If this is a packed format, we work out our offsets differently. */
/* We assume a packed format has channels that aren't byte-aligned. */
/* If we have a format in which every channel is byte-aligned *and* packed, */
/* we have the RGBA/ABGR ambiguity; we *probably* don't want the packed */
/* version in this case, and if hardware has to pack it and swizzle, */
/* that's up to the hardware to special-case. */
for (uint32_t sampleCounter = 0; sampleCounter < numSamples; ++sampleCounter) {
uint32_t offset = KHR_DFDSVAL(BDFDB, sampleCounter, BITOFFSET);
uint32_t length = KHR_DFDSVAL(BDFDB, sampleCounter, BITLENGTH) + 1;
if ((offset & 0x7U) || ((offset + length) & 0x7U)) {
result |= i_PACKED_FORMAT_BIT;
/* Once we're packed, we're packed, no need to keep checking. */
break;
}
}
// Check data types.
bool hasSigned = false;
bool hasFloat = false;
bool hasNormalized = false;
bool hasFixed = false;
khr_df_model_e model = KHR_DFDVAL(BDFDB, MODEL);
// Note: We're ignoring 9995, which is weird and worth special-casing
// rather than trying to generalise to all float formats.
for (uint32_t i = 0; i < numSamples; ++i) {
const bool isSigned = (KHR_DFDSVAL(BDFDB, i, QUALIFIERS) & KHR_DF_SAMPLE_DATATYPE_SIGNED) != 0;
const bool isFloat = (KHR_DFDSVAL(BDFDB, i, QUALIFIERS) & KHR_DF_SAMPLE_DATATYPE_FLOAT) != 0;
// We define "unnormalized" as "sample_upper = 1" or "sample_upper = 1.0f".
// We don't check whether any non-1 normalization value is correct
// (i.e. set to the maximum bit value, and check min value) on
// the assumption that we're looking at a format which *came* from
// an API we can support.
bool isFixed;
bool isNormalized;
if (isFloat) {
isNormalized = *(float*) (void*) &BDFDB[KHR_DF_WORD_SAMPLESTART +
KHR_DF_WORD_SAMPLEWORDS * i +
KHR_DF_SAMPLEWORD_SAMPLEUPPER] != 1.0f;
isFixed = false;
} else {
uint32_t sampleUpper = KHR_DFDSVAL(BDFDB, i, SAMPLEUPPER);
uint32_t maxVal = 1U << KHR_DFDSVAL(BDFDB, i, BITLENGTH);
if (!isSigned) maxVal <<= 1;
maxVal--;
isFixed = 1U < sampleUpper && sampleUpper < maxVal;
isNormalized = !isFixed && sampleUpper != 1U;
}
hasSigned |= isSigned;
hasFixed |= isFixed;
hasFloat |= isFloat;
// By our definition the normalizedness of a single bit channel (like in RGBA 5:5:5:1)
// is ambiguous. Ignore these during normalized checks.
if (KHR_DFDSVAL(BDFDB, i, BITLENGTH) > 0)
hasNormalized |= isNormalized;
}
result |= hasSigned ? i_SIGNED_FORMAT_BIT : 0;
result |= hasFloat ? i_FLOAT_FORMAT_BIT : 0;
result |= hasNormalized ? i_NORMALIZED_FORMAT_BIT : 0;
result |= hasFixed ? i_FIXED_FORMAT_BIT : 0;
// Checks based on color model
if (model == KHR_DF_MODEL_YUVSDA) {
result |= i_NORMALIZED_FORMAT_BIT;
result |= i_COMPRESSED_FORMAT_BIT;
result |= i_YUVSDA_FORMAT_BIT;
for (uint32_t i = 0; i < numSamples; ++i) {
switch (KHR_DFDSVAL(BDFDB, i, CHANNELID)) {
case KHR_DF_CHANNEL_YUVSDA_Y:
case KHR_DF_CHANNEL_YUVSDA_U:
case KHR_DF_CHANNEL_YUVSDA_V:
case KHR_DF_CHANNEL_YUVSDA_A:
break;
case KHR_DF_CHANNEL_YUVSDA_DEPTH:
case KHR_DF_CHANNEL_YUVSDA_STENCIL:
isDepthStencil = true;
break;
default:
return i_UNSUPPORTED_CHANNEL_TYPES;
}
}
// Determine wordBytes
uint32_t largestSampleSize = 0;
for (uint32_t i = 0; i < numSamples; ++i) {
uint32_t length = KHR_DFDSVAL(BDFDB, i, BITLENGTH) + 1;
if (largestSampleSize < length)
largestSampleSize = length;
}
*wordBytes = ((result & i_PACKED_FORMAT_BIT) ? 4 : 1) * bit_ceil(largestSampleSize) / 8;
} else if (KHR_DFDVAL(BDFDB, MODEL) == KHR_DF_MODEL_RGBSDA) {
/* Check if transfer is sRGB. */
if (KHR_DFDVAL(BDFDB, TRANSFER) == KHR_DF_TRANSFER_SRGB) result |= i_SRGB_FORMAT_BIT;
/* We only support samples at coordinate 0,0,0,0. */
/* (We could confirm this from texel_block_dimensions in 1.2, but */
/* the interpretation might change in later versions.) */
for (uint32_t sampleCounter = 0; sampleCounter < numSamples; ++sampleCounter) {
if (KHR_DFDSVAL(BDFDB, sampleCounter, SAMPLEPOSITION_ALL))
return i_UNSUPPORTED_MULTIPLE_SAMPLE_LOCATIONS;
}
}
if (model == KHR_DF_MODEL_RGBSDA || model == KHR_DF_MODEL_YUVSDA) {
/* The values of the DEPTH and STENCIL tokens are the same for */
/* RGBSDA and YUVSDA. */
/* For Depth/Stencil formats mixed channels are allowed */
for (uint32_t sampleCounter = 0; sampleCounter < numSamples; ++sampleCounter) {
switch (KHR_DFDSVAL(BDFDB, sampleCounter, CHANNELID)) {
case KHR_DF_CHANNEL_RGBSDA_DEPTH:
case KHR_DF_CHANNEL_RGBSDA_STENCIL:
isDepthStencil = true;
break;
default:
break;
}
}
// Check for mixed channels
if (!isDepthStencil) {
for (uint32_t i = 0; i < numSamples; ++i) {
const bool isSigned = (KHR_DFDSVAL(BDFDB, i, QUALIFIERS) & KHR_DF_SAMPLE_DATATYPE_SIGNED) != 0;
const bool isFloat = (KHR_DFDSVAL(BDFDB, i, QUALIFIERS) & KHR_DF_SAMPLE_DATATYPE_FLOAT) != 0;
if (isSigned != hasSigned)
return i_UNSUPPORTED_MIXED_CHANNELS;
if (isFloat != hasFloat)
return i_UNSUPPORTED_MIXED_CHANNELS;
// Note: We don't check for inconsistent normalization, because
// channels composed of multiple samples will have 0 in the
// lower/upper range. Single bit channels are also ambiguous.
// This heuristic should handle 64-bit integers, too.
}
}
/* This all relies on the channel id values for RGB being equal to */
/* those for YUV. */
/* Remember: the canonical ordering of samples is to start with */
/* the lowest bit of the channel/location which touches bit 0 of */
/* the data, when the latter is concatenated in little-endian order, */
/* and then progress until all the bits of that channel/location */
/* have been processed. Multiple channels sharing the same source */
/* bits are processed in channel ID order. (I should clarify this */
/* for partially-shared data, but it doesn't really matter so long */
/* as everything is consecutive, except to make things canonical.) */
/* Note: For standard formats we could determine big/little-endianness */
/* simply from whether the first sample starts in bit 0; technically */
/* it's possible to have a format with unaligned channels wherein the */
/* first channel starts at bit 0 and is one byte, yet other channels */
/* take more bytes or aren't aligned (e.g. D24S8), but this should be */
/* irrelevant for the formats that we support. */
if ((result & i_PACKED_FORMAT_BIT)) {
/* A packed format. */
uint32_t currentChannel = ~0U; /* Don't start matched. */
uint32_t currentBitOffset = 0;
uint32_t currentByteOffset = 0;
uint32_t currentBitLength = 0;
*wordBytes = (BDFDB[KHR_DF_WORD_BYTESPLANE0] & 0xFFU);
for (uint32_t sampleCounter = 0; sampleCounter < numSamples; ++sampleCounter) {
uint32_t sampleBitOffset = KHR_DFDSVAL(BDFDB, sampleCounter, BITOFFSET);
uint32_t sampleByteOffset = sampleBitOffset >> 3U;
/* The sample bitLength field stores the bit length - 1. */
uint32_t sampleBitLength = KHR_DFDSVAL(BDFDB, sampleCounter, BITLENGTH) + 1;
uint32_t sampleChannel = KHR_DFDSVAL(BDFDB, sampleCounter, CHANNELID);
InterpretedDFDChannel *sampleChannelPtr;
switch (sampleChannel) {
case KHR_DF_CHANNEL_RGBSDA_RED:
sampleChannelPtr = R;
break;
case KHR_DF_CHANNEL_RGBSDA_GREEN:
sampleChannelPtr = G;
break;
case KHR_DF_CHANNEL_RGBSDA_BLUE:
sampleChannelPtr = B;
break;
case KHR_DF_CHANNEL_RGBSDA_DEPTH:
sampleChannelPtr = R;
break;
case KHR_DF_CHANNEL_RGBSDA_STENCIL:
sampleChannelPtr = G;
break;
case KHR_DF_CHANNEL_RGBSDA_ALPHA:
sampleChannelPtr = A;
break;
default:
return i_UNSUPPORTED_CHANNEL_TYPES;
}
if (sampleChannel == currentChannel) {
/* Continuation of the same channel. */
/* Since a big (>32-bit) channel isn't "packed", */
/* this should only happen in big-endian, or if */
/* we have a wacky format that we won't support. */
if (sampleByteOffset == currentByteOffset - 1U && /* One byte earlier */
((currentBitOffset + currentBitLength) & 7U) == 0 && /* Already at the end of a byte */
(sampleBitOffset & 7U) == 0) { /* Start at the beginning of the byte */
/* All is good, continue big-endian. */
/* N.B. We shouldn't be here if we decided we were little-endian, */
/* so we don't bother to check that disagreement. */
result |= i_BIG_ENDIAN_FORMAT_BIT;
determinedEndianness = 1;
} else {
/* Oh dear. */
/* We could be little-endian, but not with any standard format. */
/* More likely we've got something weird that we can't support. */
return i_UNSUPPORTED_NONTRIVIAL_ENDIANNESS;
}
/* Remember where we are. */
currentBitOffset = sampleBitOffset;
currentByteOffset = sampleByteOffset;
currentBitLength = sampleBitLength;
/* Accumulate the bit length. */
sampleChannelPtr->size += sampleBitLength;
} else {
/* Everything is new. Hopefully. */
currentChannel = sampleChannel;
currentBitOffset = sampleBitOffset;
currentByteOffset = sampleByteOffset;
currentBitLength = sampleBitLength;
if (sampleChannelPtr->size) {
if (model == KHR_DF_MODEL_YUVSDA && sampleChannel == KHR_DF_CHANNEL_YUVSDA_Y) {
if (sampleChannelPtr == R) {
/* We've got another Y channel. Record details in A. */
if (A->size == 0) {
sampleChannelPtr = A;
} else {
/* Uh-oh, we've already got a second Y or an alpha channel. */
return i_UNSUPPORTED_CHANNEL_TYPES;
}
}
} else {
/* Uh-oh, we've seen this channel before. */
return i_UNSUPPORTED_NONTRIVIAL_ENDIANNESS;
}
}
/* For now, record the bit offset in little-endian terms, */
/* because we may not know to reverse it yet. */
sampleChannelPtr->offset = sampleBitOffset;
sampleChannelPtr->size = sampleBitLength;
}
}
if ((result & i_BIG_ENDIAN_FORMAT_BIT)) {
/* Our bit offsets to bit 0 of each channel are in little-endian terms. */
/* We need to do a byte swap to work out where they should be. */
/* We assume, for sanity, that byte sizes are a power of two for this. */
uint32_t offsetMask = (*wordBytes - 1U) << 3U;
R->offset ^= offsetMask;
G->offset ^= offsetMask;
B->offset ^= offsetMask;
A->offset ^= offsetMask;
}
} else {
/* Not a packed format. */
/* Everything is byte-aligned. */
/* Question is whether there multiple samples per channel. */
uint32_t currentChannel = ~0U; /* Don't start matched. */
uint32_t currentByteOffset = 0;
uint32_t currentByteLength = 0;
for (uint32_t sampleCounter = 0; sampleCounter < numSamples; ++sampleCounter) {
uint32_t sampleByteOffset = KHR_DFDSVAL(BDFDB, sampleCounter, BITOFFSET) >> 3U;
uint32_t sampleByteLength = (KHR_DFDSVAL(BDFDB, sampleCounter, BITLENGTH) + 1) >> 3U;
uint32_t sampleChannel = KHR_DFDSVAL(BDFDB, sampleCounter, CHANNELID);
InterpretedDFDChannel *sampleChannelPtr;
switch (sampleChannel) {
case KHR_DF_CHANNEL_RGBSDA_RED:
sampleChannelPtr = R;
break;
case KHR_DF_CHANNEL_RGBSDA_GREEN:
sampleChannelPtr = G;
break;
case KHR_DF_CHANNEL_RGBSDA_BLUE:
sampleChannelPtr = B;
break;
case KHR_DF_CHANNEL_RGBSDA_DEPTH:
sampleChannelPtr = R;
break;
case KHR_DF_CHANNEL_RGBSDA_STENCIL:
sampleChannelPtr = G;
break;
case KHR_DF_CHANNEL_RGBSDA_ALPHA:
sampleChannelPtr = A;
break;
default:
return i_UNSUPPORTED_CHANNEL_TYPES;
}
if (sampleChannel == currentChannel) {
/* Continuation of the same channel. */
/* Either big-endian, or little-endian with a very large channel. */
if (sampleByteOffset == currentByteOffset - 1) { /* One byte earlier */
if (determinedEndianness && !(result & i_BIG_ENDIAN_FORMAT_BIT)) {
return i_UNSUPPORTED_NONTRIVIAL_ENDIANNESS;
}
/* All is good, continue big-endian. */
result |= i_BIG_ENDIAN_FORMAT_BIT;
determinedEndianness = 1;
/* Update the start */
sampleChannelPtr->offset = sampleByteOffset;
} else if (sampleByteOffset == currentByteOffset + currentByteLength) {
if (determinedEndianness && (result & i_BIG_ENDIAN_FORMAT_BIT)) {
return i_UNSUPPORTED_NONTRIVIAL_ENDIANNESS;
}
/* All is good, continue little-endian. */
determinedEndianness = 1;
} else {
/* Oh dear. */
/* We could be little-endian, but not with any standard format. */
/* More likely we've got something weird that we can't support. */
return i_UNSUPPORTED_NONTRIVIAL_ENDIANNESS;
}
/* Remember where we are. */
currentByteOffset = sampleByteOffset;
currentByteLength = sampleByteLength;
/* Accumulate the byte length. */
sampleChannelPtr->size += sampleByteLength;
/* Assume these are all the same. */
*wordBytes = sampleChannelPtr->size;
} else {
/* Everything is new. Hopefully. */
currentChannel = sampleChannel;
currentByteOffset = sampleByteOffset;
currentByteLength = sampleByteLength;
if (sampleChannelPtr->size) {
if (model == KHR_DF_MODEL_YUVSDA && sampleChannel == KHR_DF_CHANNEL_YUVSDA_Y) {
if (sampleChannelPtr == R) {
/* We've got another Y channel. Record details in A. */
if (A->size == 0) {
sampleChannelPtr = A;
} else {
/* Uh-oh, we've already got a second Y or an alpha channel. */
return i_UNSUPPORTED_CHANNEL_TYPES;
}
}
} else {
/* Uh-oh, we've seen this channel before. */
return i_UNSUPPORTED_NONTRIVIAL_ENDIANNESS;
}
}
/* For now, record the byte offset in little-endian terms, */
/* because we may not know to reverse it yet. */
sampleChannelPtr->offset = sampleByteOffset;
sampleChannelPtr->size = sampleByteLength;
/* Assume these are all the same. */
*wordBytes = sampleByteLength;
}
}
}
} else {
return i_UNSUPPORTED_CHANNEL_TYPES;
}
if (isDepthStencil) {
/* For Depth/Stencil formats wordBytes is determined by the required alignment of */
/* the larger channel. */
uint32_t largerSize = R->size > G->size ? R->size : G->size;
*wordBytes = bit_ceil(largerSize);
}
return result;
}

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,215 @@
/* -*- tab-width: 4; -*- */
/* vi: set sw=2 ts=4 expandtab: */
/* Copyright 2019-2020 The Khronos Group Inc.
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @file
* @~English
* @brief Utilities for querying info from a data format descriptor.
* @author Mark Callow
*/
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <KHR/khr_df.h>
#include "dfd.h"
/**
* @~English
* @brief Get the number and size of the image components from a DFD.
*
* This simplified function is for use only with the DFDs for unpacked
* formats which means all components have the same size.
*
* @param DFD Pointer to a Data Format Descriptor to interpret,
described as 32-bit words in native endianness.
Note that this is the whole descriptor, not just
the basic descriptor block.
* @param numComponents pointer to a 32-bit word in which the number of
components will be written.
* @param componentByteLength pointer to a 32-bit word in which the size of
a component in bytes will be written.
*/
void
getDFDComponentInfoUnpacked(const uint32_t* DFD, uint32_t* numComponents,
uint32_t* componentByteLength)
{
const uint32_t *BDFDB = DFD+1;
uint32_t numSamples = KHR_DFDSAMPLECOUNT(BDFDB);
uint32_t sampleNumber;
uint32_t currentChannel = ~0U; /* Don't start matched. */
/* This is specifically for unpacked formats which means the size of */
/* each component is the same. */
*numComponents = 0;
for (sampleNumber = 0; sampleNumber < numSamples; ++sampleNumber) {
uint32_t sampleByteLength = (KHR_DFDSVAL(BDFDB, sampleNumber, BITLENGTH) + 1) >> 3U;
uint32_t sampleChannel = KHR_DFDSVAL(BDFDB, sampleNumber, CHANNELID);
if (sampleChannel == currentChannel) {
/* Continuation of the same channel. */
/* Accumulate the byte length. */
*componentByteLength += sampleByteLength;
} else {
/* Everything is new. Hopefully. */
currentChannel = sampleChannel;
(*numComponents)++;
*componentByteLength = sampleByteLength;
}
}
}
/**
* @~English
* @brief Return the number of "components" in the data.
*
* Calculates the number of uniques samples in the DFD by combining
* multiple samples for the same channel. For uncompressed colorModels
* this is the same as the number of components in the image data. For
* block-compressed color models this is the number of samples in
* the color model, typically 1 and in a few cases 2.
*
* @param DFD Pointer to a Data Format Descriptor for which,
* described as 32-bit words in native endianness.
* Note that this is the whole descriptor, not just
* the basic descriptor block.
*/
uint32_t getDFDNumComponents(const uint32_t* DFD)
{
const uint32_t *BDFDB = DFD+1;
uint32_t currentChannel = ~0U; /* Don't start matched. */
uint32_t numComponents = 0;
uint32_t numSamples = KHR_DFDSAMPLECOUNT(BDFDB);
uint32_t sampleNumber;
for (sampleNumber = 0; sampleNumber < numSamples; ++sampleNumber) {
uint32_t sampleChannel = KHR_DFDSVAL(BDFDB, sampleNumber, CHANNELID);
if (sampleChannel != currentChannel) {
numComponents++;
currentChannel = sampleChannel;
}
}
return numComponents;
}
/**
* @~English
* @brief Reconstruct the value of bytesPlane0 from sample info.
*
* @deprecated Use reconstructDFDBytesPlanesFromSamples. This does not handle
* the possible second plane of the ETC1S model.
*
* Reconstruct the value for data that has been variable-rate compressed
* and and whose bytesPlane0 value has been set to 0. For DFDs that
* are valid for KTX files. Little-endian data only and no multi-plane models
* except ETC1S.
*
* @param DFD Pointer to the Data Format Descriptor for which to provide
* the value described as 32-bit words in native endianness.
* Note that this is the whole descriptor, not just
* the basic descriptor block.
* @return The number of bytes a pixel occupies in bytesPlane0.
*/
uint32_t
reconstructDFDBytesPlane0FromSamples(const uint32_t* DFD)
{
const uint32_t *BDFDB = DFD+1;
uint32_t numSamples = KHR_DFDSAMPLECOUNT(BDFDB);
uint32_t sampleNumber;
uint32_t bitsPlane0 = 0;
int32_t largestOffset = 0;
uint32_t sampleNumberWithLargestOffset = 0;
// Special case these depth{,-stencil} formats. The unused bits are
// in the MSBs so have no visibility in the DFD therefore the max offset
// algorithm below returns a value that is too small.
if (KHR_DFDSVAL(BDFDB, 0, CHANNELID) == KHR_DF_CHANNEL_COMMON_DEPTH) {
if (numSamples == 1) {
if (KHR_DFDSVAL(BDFDB, 0, BITLENGTH) + 1 == 24) {
// X8_D24_UNORM_PACK32,
return 4;
}
} else if (numSamples == 2) {
if (KHR_DFDSVAL(BDFDB, 0, BITLENGTH) + 1 == 16) {
// D16_UNORM_S8_UINT
return 4;
}
if (KHR_DFDSVAL(BDFDB, 0, BITLENGTH) + 1 == 32
&& KHR_DFDSVAL(BDFDB, 1, CHANNELID) == KHR_DF_CHANNEL_COMMON_STENCIL) {
// D32_SFLOAT_S8_UINT
return 8;
}
}
}
if (KHR_DFDVAL(BDFDB, MODEL) == KHR_DF_MODEL_ETC1S) {
// Size of the first plane.
return 8;
}
for (sampleNumber = 0; sampleNumber < numSamples; ++sampleNumber) {
int32_t sampleBitOffset = KHR_DFDSVAL(BDFDB, sampleNumber, BITOFFSET);
if (sampleBitOffset > largestOffset) {
largestOffset = sampleBitOffset;
sampleNumberWithLargestOffset = sampleNumber;
}
}
/* The sample bitLength field stores the bit length - 1. */
uint32_t sampleBitLength = KHR_DFDSVAL(BDFDB, sampleNumberWithLargestOffset, BITLENGTH) + 1;
bitsPlane0 = largestOffset + sampleBitLength;
return bitsPlane0 >> 3U;
}
/**
* @~English
* @brief Reconstruct the values of bytesPlane[01] from sample info.
*
* Reconstruct the values for data that has been variable-rate compressed
* and whose bytesPlane[01] values have been set to 0 and update the
* fields of the target DFD. For DFDs that are valid for KTX files.
* Little-endian data only and no multi-plane models except ETC1S hence
* only looking at bytesPlane0 abd bytesPlane1.
*
* @param DFD Pointer to a Data Format Descriptor for which,
* described as 32-bit words in native endianness.
* Note that this is the whole descriptor, not just
* the basic descriptor block.
*/
void
reconstructDFDBytesPlanesFromSamples(uint32_t* DFD)
{
uint32_t *BDFDB = DFD+1;
KHR_DFDSETVAL(BDFDB, BYTESPLANE0, reconstructDFDBytesPlane0FromSamples(DFD));
if (KHR_DFDVAL(BDFDB, MODEL) == KHR_DF_MODEL_ETC1S) {
if (KHR_DFDSAMPLECOUNT(BDFDB) == 2)
KHR_DFDSETVAL(BDFDB, BYTESPLANE1, 8);
}
}
/**
* @~English
* @brief Reconstruct the value of bytesPlane0 from sample info.
*
* @see reconstructDFDBytesPlane0FromSamples for details.
* @deprecated For backward comparibility only. Use
* reconstructDFDBytesPlanesFromSamples.
*
* @param DFD Pointer to the Data Format Descriptor for which to provide
* the value described as 32-bit words in native endianness.
* Note that this is the whole descriptor, not just
* the basic descriptor block.
* @param bytesPlane0 pointer to a 32-bit word in which the recreated
* value of bytesPlane0 will be written.
*/
void
recreateBytesPlane0FromSampleInfo(const uint32_t* DFD, uint32_t* bytesPlane0)
{
*bytesPlane0 = reconstructDFDBytesPlane0FromSamples(DFD);
}

View File

@@ -0,0 +1,34 @@
/* -*- tab-width: 4; -*- */
/* vi: set sw=2 ts=4 expandtab: */
/* Copyright 2019-2020 Mark Callow
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @file
* @~English
* @brief Create a DFD for a VkFormat.
*/
#include "dfd.h"
/**
* @~English
* @brief Create a DFD matching a VkFormat.
*
* @param[in] format VkFormat for which to create a DFD.
*
* @return pointer to the created DFD or 0 if format not supported or
* unrecognized. Caller is responsible for freeing the created
* DFD.
*/
uint32_t*
vk2dfd(enum VkFormat format)
{
switch (format) {
#include "vk2dfd.inl"
default: return 0;
}
}

View File

@@ -0,0 +1,410 @@
/* Copyright 2019-2020 The Khronos Group Inc. */
/* SPDX-License-Identifier: Apache-2.0 */
/***************************** Do not edit. *****************************
Automatically generated by makevk2dfd.pl.
*************************************************************************/
case VK_FORMAT_R4G4_UNORM_PACK8: {
int channels[] = {1,0}; int bits[] = {4,4};
return createDFDPacked(0, 2, bits, channels, s_UNORM);
}
case VK_FORMAT_R4G4B4A4_UNORM_PACK16: {
int channels[] = {3,2,1,0}; int bits[] = {4,4,4,4};
return createDFDPacked(0, 4, bits, channels, s_UNORM);
}
case VK_FORMAT_B4G4R4A4_UNORM_PACK16: {
int channels[] = {3,0,1,2}; int bits[] = {4,4,4,4};
return createDFDPacked(0, 4, bits, channels, s_UNORM);
}
case VK_FORMAT_R5G6B5_UNORM_PACK16: {
int channels[] = {2,1,0}; int bits[] = {5,6,5};
return createDFDPacked(0, 3, bits, channels, s_UNORM);
}
case VK_FORMAT_B5G6R5_UNORM_PACK16: {
int channels[] = {0,1,2}; int bits[] = {5,6,5};
return createDFDPacked(0, 3, bits, channels, s_UNORM);
}
case VK_FORMAT_R5G5B5A1_UNORM_PACK16: {
int channels[] = {3,2,1,0}; int bits[] = {1,5,5,5};
return createDFDPacked(0, 4, bits, channels, s_UNORM);
}
case VK_FORMAT_B5G5R5A1_UNORM_PACK16: {
int channels[] = {3,0,1,2}; int bits[] = {1,5,5,5};
return createDFDPacked(0, 4, bits, channels, s_UNORM);
}
case VK_FORMAT_A1R5G5B5_UNORM_PACK16: {
int channels[] = {2,1,0,3}; int bits[] = {5,5,5,1};
return createDFDPacked(0, 4, bits, channels, s_UNORM);
}
case VK_FORMAT_R8_UNORM: return createDFDUnpacked(0, 1, 1, 0, s_UNORM);
case VK_FORMAT_R8_SNORM: return createDFDUnpacked(0, 1, 1, 0, s_SNORM);
case VK_FORMAT_R8_USCALED: return createDFDUnpacked(0, 1, 1, 0, s_USCALED);
case VK_FORMAT_R8_SSCALED: return createDFDUnpacked(0, 1, 1, 0, s_SSCALED);
case VK_FORMAT_R8_UINT: return createDFDUnpacked(0, 1, 1, 0, s_UINT);
case VK_FORMAT_R8_SINT: return createDFDUnpacked(0, 1, 1, 0, s_SINT);
case VK_FORMAT_R8_SRGB: return createDFDUnpacked(0, 1, 1, 0, s_SRGB);
case VK_FORMAT_R8G8_UNORM: return createDFDUnpacked(0, 2, 1, 0, s_UNORM);
case VK_FORMAT_R8G8_SNORM: return createDFDUnpacked(0, 2, 1, 0, s_SNORM);
case VK_FORMAT_R8G8_USCALED: return createDFDUnpacked(0, 2, 1, 0, s_USCALED);
case VK_FORMAT_R8G8_SSCALED: return createDFDUnpacked(0, 2, 1, 0, s_SSCALED);
case VK_FORMAT_R8G8_UINT: return createDFDUnpacked(0, 2, 1, 0, s_UINT);
case VK_FORMAT_R8G8_SINT: return createDFDUnpacked(0, 2, 1, 0, s_SINT);
case VK_FORMAT_R8G8_SRGB: return createDFDUnpacked(0, 2, 1, 0, s_SRGB);
case VK_FORMAT_R8G8B8_UNORM: return createDFDUnpacked(0, 3, 1, 0, s_UNORM);
case VK_FORMAT_R8G8B8_SNORM: return createDFDUnpacked(0, 3, 1, 0, s_SNORM);
case VK_FORMAT_R8G8B8_USCALED: return createDFDUnpacked(0, 3, 1, 0, s_USCALED);
case VK_FORMAT_R8G8B8_SSCALED: return createDFDUnpacked(0, 3, 1, 0, s_SSCALED);
case VK_FORMAT_R8G8B8_UINT: return createDFDUnpacked(0, 3, 1, 0, s_UINT);
case VK_FORMAT_R8G8B8_SINT: return createDFDUnpacked(0, 3, 1, 0, s_SINT);
case VK_FORMAT_R8G8B8_SRGB: return createDFDUnpacked(0, 3, 1, 0, s_SRGB);
case VK_FORMAT_B8G8R8_UNORM: return createDFDUnpacked(0, 3, 1, 1, s_UNORM);
case VK_FORMAT_B8G8R8_SNORM: return createDFDUnpacked(0, 3, 1, 1, s_SNORM);
case VK_FORMAT_B8G8R8_USCALED: return createDFDUnpacked(0, 3, 1, 1, s_USCALED);
case VK_FORMAT_B8G8R8_SSCALED: return createDFDUnpacked(0, 3, 1, 1, s_SSCALED);
case VK_FORMAT_B8G8R8_UINT: return createDFDUnpacked(0, 3, 1, 1, s_UINT);
case VK_FORMAT_B8G8R8_SINT: return createDFDUnpacked(0, 3, 1, 1, s_SINT);
case VK_FORMAT_B8G8R8_SRGB: return createDFDUnpacked(0, 3, 1, 1, s_SRGB);
case VK_FORMAT_R8G8B8A8_UNORM: return createDFDUnpacked(0, 4, 1, 0, s_UNORM);
case VK_FORMAT_R8G8B8A8_SNORM: return createDFDUnpacked(0, 4, 1, 0, s_SNORM);
case VK_FORMAT_R8G8B8A8_USCALED: return createDFDUnpacked(0, 4, 1, 0, s_USCALED);
case VK_FORMAT_R8G8B8A8_SSCALED: return createDFDUnpacked(0, 4, 1, 0, s_SSCALED);
case VK_FORMAT_R8G8B8A8_UINT: return createDFDUnpacked(0, 4, 1, 0, s_UINT);
case VK_FORMAT_R8G8B8A8_SINT: return createDFDUnpacked(0, 4, 1, 0, s_SINT);
case VK_FORMAT_R8G8B8A8_SRGB: return createDFDUnpacked(0, 4, 1, 0, s_SRGB);
case VK_FORMAT_B8G8R8A8_UNORM: return createDFDUnpacked(0, 4, 1, 1, s_UNORM);
case VK_FORMAT_B8G8R8A8_SNORM: return createDFDUnpacked(0, 4, 1, 1, s_SNORM);
case VK_FORMAT_B8G8R8A8_USCALED: return createDFDUnpacked(0, 4, 1, 1, s_USCALED);
case VK_FORMAT_B8G8R8A8_SSCALED: return createDFDUnpacked(0, 4, 1, 1, s_SSCALED);
case VK_FORMAT_B8G8R8A8_UINT: return createDFDUnpacked(0, 4, 1, 1, s_UINT);
case VK_FORMAT_B8G8R8A8_SINT: return createDFDUnpacked(0, 4, 1, 1, s_SINT);
case VK_FORMAT_B8G8R8A8_SRGB: return createDFDUnpacked(0, 4, 1, 1, s_SRGB);
case VK_FORMAT_A8B8G8R8_UNORM_PACK32: {
int channels[] = {0,1,2,3}; int bits[] = {8,8,8,8};
return createDFDPacked(0, 4, bits, channels, s_UNORM);
}
case VK_FORMAT_A8B8G8R8_SNORM_PACK32: {
int channels[] = {0,1,2,3}; int bits[] = {8,8,8,8};
return createDFDPacked(0, 4, bits, channels, s_SNORM);
}
case VK_FORMAT_A8B8G8R8_USCALED_PACK32: {
int channels[] = {0,1,2,3}; int bits[] = {8,8,8,8};
return createDFDPacked(0, 4, bits, channels, s_USCALED);
}
case VK_FORMAT_A8B8G8R8_SSCALED_PACK32: {
int channels[] = {0,1,2,3}; int bits[] = {8,8,8,8};
return createDFDPacked(0, 4, bits, channels, s_SSCALED);
}
case VK_FORMAT_A8B8G8R8_UINT_PACK32: {
int channels[] = {0,1,2,3}; int bits[] = {8,8,8,8};
return createDFDPacked(0, 4, bits, channels, s_UINT);
}
case VK_FORMAT_A8B8G8R8_SINT_PACK32: {
int channels[] = {0,1,2,3}; int bits[] = {8,8,8,8};
return createDFDPacked(0, 4, bits, channels, s_SINT);
}
case VK_FORMAT_A8B8G8R8_SRGB_PACK32: {
int channels[] = {0,1,2,3}; int bits[] = {8,8,8,8};
return createDFDPacked(0, 4, bits, channels, s_SRGB);
}
case VK_FORMAT_A2R10G10B10_UNORM_PACK32: {
int channels[] = {2,1,0,3}; int bits[] = {10,10,10,2};
return createDFDPacked(0, 4, bits, channels, s_UNORM);
}
case VK_FORMAT_A2R10G10B10_SNORM_PACK32: {
int channels[] = {2,1,0,3}; int bits[] = {10,10,10,2};
return createDFDPacked(0, 4, bits, channels, s_SNORM);
}
case VK_FORMAT_A2R10G10B10_USCALED_PACK32: {
int channels[] = {2,1,0,3}; int bits[] = {10,10,10,2};
return createDFDPacked(0, 4, bits, channels, s_USCALED);
}
case VK_FORMAT_A2R10G10B10_SSCALED_PACK32: {
int channels[] = {2,1,0,3}; int bits[] = {10,10,10,2};
return createDFDPacked(0, 4, bits, channels, s_SSCALED);
}
case VK_FORMAT_A2R10G10B10_UINT_PACK32: {
int channels[] = {2,1,0,3}; int bits[] = {10,10,10,2};
return createDFDPacked(0, 4, bits, channels, s_UINT);
}
case VK_FORMAT_A2R10G10B10_SINT_PACK32: {
int channels[] = {2,1,0,3}; int bits[] = {10,10,10,2};
return createDFDPacked(0, 4, bits, channels, s_SINT);
}
case VK_FORMAT_A2B10G10R10_UNORM_PACK32: {
int channels[] = {0,1,2,3}; int bits[] = {10,10,10,2};
return createDFDPacked(0, 4, bits, channels, s_UNORM);
}
case VK_FORMAT_A2B10G10R10_SNORM_PACK32: {
int channels[] = {0,1,2,3}; int bits[] = {10,10,10,2};
return createDFDPacked(0, 4, bits, channels, s_SNORM);
}
case VK_FORMAT_A2B10G10R10_USCALED_PACK32: {
int channels[] = {0,1,2,3}; int bits[] = {10,10,10,2};
return createDFDPacked(0, 4, bits, channels, s_USCALED);
}
case VK_FORMAT_A2B10G10R10_SSCALED_PACK32: {
int channels[] = {0,1,2,3}; int bits[] = {10,10,10,2};
return createDFDPacked(0, 4, bits, channels, s_SSCALED);
}
case VK_FORMAT_A2B10G10R10_UINT_PACK32: {
int channels[] = {0,1,2,3}; int bits[] = {10,10,10,2};
return createDFDPacked(0, 4, bits, channels, s_UINT);
}
case VK_FORMAT_A2B10G10R10_SINT_PACK32: {
int channels[] = {0,1,2,3}; int bits[] = {10,10,10,2};
return createDFDPacked(0, 4, bits, channels, s_SINT);
}
case VK_FORMAT_R16_UNORM: return createDFDUnpacked(0, 1, 2, 0, s_UNORM);
case VK_FORMAT_R16_SNORM: return createDFDUnpacked(0, 1, 2, 0, s_SNORM);
case VK_FORMAT_R16_USCALED: return createDFDUnpacked(0, 1, 2, 0, s_USCALED);
case VK_FORMAT_R16_SSCALED: return createDFDUnpacked(0, 1, 2, 0, s_SSCALED);
case VK_FORMAT_R16_UINT: return createDFDUnpacked(0, 1, 2, 0, s_UINT);
case VK_FORMAT_R16_SINT: return createDFDUnpacked(0, 1, 2, 0, s_SINT);
case VK_FORMAT_R16_SFLOAT: return createDFDUnpacked(0, 1, 2, 0, s_SFLOAT);
case VK_FORMAT_R16G16_UNORM: return createDFDUnpacked(0, 2, 2, 0, s_UNORM);
case VK_FORMAT_R16G16_SNORM: return createDFDUnpacked(0, 2, 2, 0, s_SNORM);
case VK_FORMAT_R16G16_USCALED: return createDFDUnpacked(0, 2, 2, 0, s_USCALED);
case VK_FORMAT_R16G16_SSCALED: return createDFDUnpacked(0, 2, 2, 0, s_SSCALED);
case VK_FORMAT_R16G16_UINT: return createDFDUnpacked(0, 2, 2, 0, s_UINT);
case VK_FORMAT_R16G16_SINT: return createDFDUnpacked(0, 2, 2, 0, s_SINT);
case VK_FORMAT_R16G16_SFLOAT: return createDFDUnpacked(0, 2, 2, 0, s_SFLOAT);
case VK_FORMAT_R16G16B16_UNORM: return createDFDUnpacked(0, 3, 2, 0, s_UNORM);
case VK_FORMAT_R16G16B16_SNORM: return createDFDUnpacked(0, 3, 2, 0, s_SNORM);
case VK_FORMAT_R16G16B16_USCALED: return createDFDUnpacked(0, 3, 2, 0, s_USCALED);
case VK_FORMAT_R16G16B16_SSCALED: return createDFDUnpacked(0, 3, 2, 0, s_SSCALED);
case VK_FORMAT_R16G16B16_UINT: return createDFDUnpacked(0, 3, 2, 0, s_UINT);
case VK_FORMAT_R16G16B16_SINT: return createDFDUnpacked(0, 3, 2, 0, s_SINT);
case VK_FORMAT_R16G16B16_SFLOAT: return createDFDUnpacked(0, 3, 2, 0, s_SFLOAT);
case VK_FORMAT_R16G16B16A16_UNORM: return createDFDUnpacked(0, 4, 2, 0, s_UNORM);
case VK_FORMAT_R16G16B16A16_SNORM: return createDFDUnpacked(0, 4, 2, 0, s_SNORM);
case VK_FORMAT_R16G16B16A16_USCALED: return createDFDUnpacked(0, 4, 2, 0, s_USCALED);
case VK_FORMAT_R16G16B16A16_SSCALED: return createDFDUnpacked(0, 4, 2, 0, s_SSCALED);
case VK_FORMAT_R16G16B16A16_UINT: return createDFDUnpacked(0, 4, 2, 0, s_UINT);
case VK_FORMAT_R16G16B16A16_SINT: return createDFDUnpacked(0, 4, 2, 0, s_SINT);
case VK_FORMAT_R16G16B16A16_SFLOAT: return createDFDUnpacked(0, 4, 2, 0, s_SFLOAT);
case VK_FORMAT_R32_UINT: return createDFDUnpacked(0, 1, 4, 0, s_UINT);
case VK_FORMAT_R32_SINT: return createDFDUnpacked(0, 1, 4, 0, s_SINT);
case VK_FORMAT_R32_SFLOAT: return createDFDUnpacked(0, 1, 4, 0, s_SFLOAT);
case VK_FORMAT_R32G32_UINT: return createDFDUnpacked(0, 2, 4, 0, s_UINT);
case VK_FORMAT_R32G32_SINT: return createDFDUnpacked(0, 2, 4, 0, s_SINT);
case VK_FORMAT_R32G32_SFLOAT: return createDFDUnpacked(0, 2, 4, 0, s_SFLOAT);
case VK_FORMAT_R32G32B32_UINT: return createDFDUnpacked(0, 3, 4, 0, s_UINT);
case VK_FORMAT_R32G32B32_SINT: return createDFDUnpacked(0, 3, 4, 0, s_SINT);
case VK_FORMAT_R32G32B32_SFLOAT: return createDFDUnpacked(0, 3, 4, 0, s_SFLOAT);
case VK_FORMAT_R32G32B32A32_UINT: return createDFDUnpacked(0, 4, 4, 0, s_UINT);
case VK_FORMAT_R32G32B32A32_SINT: return createDFDUnpacked(0, 4, 4, 0, s_SINT);
case VK_FORMAT_R32G32B32A32_SFLOAT: return createDFDUnpacked(0, 4, 4, 0, s_SFLOAT);
case VK_FORMAT_R64_UINT: return createDFDUnpacked(0, 1, 8, 0, s_UINT);
case VK_FORMAT_R64_SINT: return createDFDUnpacked(0, 1, 8, 0, s_SINT);
case VK_FORMAT_R64_SFLOAT: return createDFDUnpacked(0, 1, 8, 0, s_SFLOAT);
case VK_FORMAT_R64G64_UINT: return createDFDUnpacked(0, 2, 8, 0, s_UINT);
case VK_FORMAT_R64G64_SINT: return createDFDUnpacked(0, 2, 8, 0, s_SINT);
case VK_FORMAT_R64G64_SFLOAT: return createDFDUnpacked(0, 2, 8, 0, s_SFLOAT);
case VK_FORMAT_R64G64B64_UINT: return createDFDUnpacked(0, 3, 8, 0, s_UINT);
case VK_FORMAT_R64G64B64_SINT: return createDFDUnpacked(0, 3, 8, 0, s_SINT);
case VK_FORMAT_R64G64B64_SFLOAT: return createDFDUnpacked(0, 3, 8, 0, s_SFLOAT);
case VK_FORMAT_R64G64B64A64_UINT: return createDFDUnpacked(0, 4, 8, 0, s_UINT);
case VK_FORMAT_R64G64B64A64_SINT: return createDFDUnpacked(0, 4, 8, 0, s_SINT);
case VK_FORMAT_R64G64B64A64_SFLOAT: return createDFDUnpacked(0, 4, 8, 0, s_SFLOAT);
case VK_FORMAT_B10G11R11_UFLOAT_PACK32: {
int channels[] = {0,1,2}; int bits[] = {11,11,10};
return createDFDPacked(0, 3, bits, channels, s_UFLOAT);
}
case VK_FORMAT_E5B9G9R9_UFLOAT_PACK32: {
int bits[] = {0}; int channels[] = {0};
return createDFDPacked(0, 6, bits, channels, s_UFLOAT);
}
case VK_FORMAT_D16_UNORM: return createDFDDepthStencil(16,0,2);
case VK_FORMAT_X8_D24_UNORM_PACK32: return createDFDDepthStencil(24,0,4);
case VK_FORMAT_D32_SFLOAT: return createDFDDepthStencil(32,0,4);
case VK_FORMAT_S8_UINT: return createDFDDepthStencil(0,8,1);
case VK_FORMAT_D16_UNORM_S8_UINT: return createDFDDepthStencil(16,8,4);
case VK_FORMAT_D24_UNORM_S8_UINT: return createDFDDepthStencil(24,8,4);
case VK_FORMAT_D32_SFLOAT_S8_UINT: return createDFDDepthStencil(32,8,8);
case VK_FORMAT_BC1_RGB_UNORM_BLOCK: return createDFDCompressed(c_BC1_RGB, 4, 4, 1, s_UNORM);
case VK_FORMAT_BC1_RGB_SRGB_BLOCK: return createDFDCompressed(c_BC1_RGB, 4, 4, 1, s_SRGB);
case VK_FORMAT_BC1_RGBA_UNORM_BLOCK: return createDFDCompressed(c_BC1_RGBA, 4, 4, 1, s_UNORM);
case VK_FORMAT_BC1_RGBA_SRGB_BLOCK: return createDFDCompressed(c_BC1_RGBA, 4, 4, 1, s_SRGB);
case VK_FORMAT_BC2_UNORM_BLOCK: return createDFDCompressed(c_BC2, 4, 4, 1, s_UNORM);
case VK_FORMAT_BC2_SRGB_BLOCK: return createDFDCompressed(c_BC2, 4, 4, 1, s_SRGB);
case VK_FORMAT_BC3_UNORM_BLOCK: return createDFDCompressed(c_BC3, 4, 4, 1, s_UNORM);
case VK_FORMAT_BC3_SRGB_BLOCK: return createDFDCompressed(c_BC3, 4, 4, 1, s_SRGB);
case VK_FORMAT_BC4_UNORM_BLOCK: return createDFDCompressed(c_BC4, 4, 4, 1, s_UNORM);
case VK_FORMAT_BC4_SNORM_BLOCK: return createDFDCompressed(c_BC4, 4, 4, 1, s_SNORM);
case VK_FORMAT_BC5_UNORM_BLOCK: return createDFDCompressed(c_BC5, 4, 4, 1, s_UNORM);
case VK_FORMAT_BC5_SNORM_BLOCK: return createDFDCompressed(c_BC5, 4, 4, 1, s_SNORM);
case VK_FORMAT_BC6H_UFLOAT_BLOCK: return createDFDCompressed(c_BC6H, 4, 4, 1, s_UFLOAT);
case VK_FORMAT_BC6H_SFLOAT_BLOCK: return createDFDCompressed(c_BC6H, 4, 4, 1, s_SFLOAT);
case VK_FORMAT_BC7_UNORM_BLOCK: return createDFDCompressed(c_BC7, 4, 4, 1, s_UNORM);
case VK_FORMAT_BC7_SRGB_BLOCK: return createDFDCompressed(c_BC7, 4, 4, 1, s_SRGB);
case VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK: return createDFDCompressed(c_ETC2_R8G8B8, 4, 4, 1, s_UNORM);
case VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK: return createDFDCompressed(c_ETC2_R8G8B8, 4, 4, 1, s_SRGB);
case VK_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK: return createDFDCompressed(c_ETC2_R8G8B8A1, 4, 4, 1, s_UNORM);
case VK_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK: return createDFDCompressed(c_ETC2_R8G8B8A1, 4, 4, 1, s_SRGB);
case VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK: return createDFDCompressed(c_ETC2_R8G8B8A8, 4, 4, 1, s_UNORM);
case VK_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK: return createDFDCompressed(c_ETC2_R8G8B8A8, 4, 4, 1, s_SRGB);
case VK_FORMAT_EAC_R11_UNORM_BLOCK: return createDFDCompressed(c_EAC_R11, 4, 4, 1, s_UNORM);
case VK_FORMAT_EAC_R11_SNORM_BLOCK: return createDFDCompressed(c_EAC_R11, 4, 4, 1, s_SNORM);
case VK_FORMAT_EAC_R11G11_UNORM_BLOCK: return createDFDCompressed(c_EAC_R11G11, 4, 4, 1, s_UNORM);
case VK_FORMAT_EAC_R11G11_SNORM_BLOCK: return createDFDCompressed(c_EAC_R11G11, 4, 4, 1, s_SNORM);
case VK_FORMAT_ASTC_4x4_UNORM_BLOCK: return createDFDCompressed(c_ASTC, 4, 4, 1, s_UNORM);
case VK_FORMAT_ASTC_4x4_SRGB_BLOCK: return createDFDCompressed(c_ASTC, 4, 4, 1, s_SRGB);
case VK_FORMAT_ASTC_5x4_UNORM_BLOCK: return createDFDCompressed(c_ASTC, 5, 4, 1, s_UNORM);
case VK_FORMAT_ASTC_5x4_SRGB_BLOCK: return createDFDCompressed(c_ASTC, 5, 4, 1, s_SRGB);
case VK_FORMAT_ASTC_5x5_UNORM_BLOCK: return createDFDCompressed(c_ASTC, 5, 5, 1, s_UNORM);
case VK_FORMAT_ASTC_5x5_SRGB_BLOCK: return createDFDCompressed(c_ASTC, 5, 5, 1, s_SRGB);
case VK_FORMAT_ASTC_6x5_UNORM_BLOCK: return createDFDCompressed(c_ASTC, 6, 5, 1, s_UNORM);
case VK_FORMAT_ASTC_6x5_SRGB_BLOCK: return createDFDCompressed(c_ASTC, 6, 5, 1, s_SRGB);
case VK_FORMAT_ASTC_6x6_UNORM_BLOCK: return createDFDCompressed(c_ASTC, 6, 6, 1, s_UNORM);
case VK_FORMAT_ASTC_6x6_SRGB_BLOCK: return createDFDCompressed(c_ASTC, 6, 6, 1, s_SRGB);
case VK_FORMAT_ASTC_8x5_UNORM_BLOCK: return createDFDCompressed(c_ASTC, 8, 5, 1, s_UNORM);
case VK_FORMAT_ASTC_8x5_SRGB_BLOCK: return createDFDCompressed(c_ASTC, 8, 5, 1, s_SRGB);
case VK_FORMAT_ASTC_8x6_UNORM_BLOCK: return createDFDCompressed(c_ASTC, 8, 6, 1, s_UNORM);
case VK_FORMAT_ASTC_8x6_SRGB_BLOCK: return createDFDCompressed(c_ASTC, 8, 6, 1, s_SRGB);
case VK_FORMAT_ASTC_8x8_UNORM_BLOCK: return createDFDCompressed(c_ASTC, 8, 8, 1, s_UNORM);
case VK_FORMAT_ASTC_8x8_SRGB_BLOCK: return createDFDCompressed(c_ASTC, 8, 8, 1, s_SRGB);
case VK_FORMAT_ASTC_10x5_UNORM_BLOCK: return createDFDCompressed(c_ASTC, 10, 5, 1, s_UNORM);
case VK_FORMAT_ASTC_10x5_SRGB_BLOCK: return createDFDCompressed(c_ASTC, 10, 5, 1, s_SRGB);
case VK_FORMAT_ASTC_10x6_UNORM_BLOCK: return createDFDCompressed(c_ASTC, 10, 6, 1, s_UNORM);
case VK_FORMAT_ASTC_10x6_SRGB_BLOCK: return createDFDCompressed(c_ASTC, 10, 6, 1, s_SRGB);
case VK_FORMAT_ASTC_10x8_UNORM_BLOCK: return createDFDCompressed(c_ASTC, 10, 8, 1, s_UNORM);
case VK_FORMAT_ASTC_10x8_SRGB_BLOCK: return createDFDCompressed(c_ASTC, 10, 8, 1, s_SRGB);
case VK_FORMAT_ASTC_10x10_UNORM_BLOCK: return createDFDCompressed(c_ASTC, 10, 10, 1, s_UNORM);
case VK_FORMAT_ASTC_10x10_SRGB_BLOCK: return createDFDCompressed(c_ASTC, 10, 10, 1, s_SRGB);
case VK_FORMAT_ASTC_12x10_UNORM_BLOCK: return createDFDCompressed(c_ASTC, 12, 10, 1, s_UNORM);
case VK_FORMAT_ASTC_12x10_SRGB_BLOCK: return createDFDCompressed(c_ASTC, 12, 10, 1, s_SRGB);
case VK_FORMAT_ASTC_12x12_UNORM_BLOCK: return createDFDCompressed(c_ASTC, 12, 12, 1, s_UNORM);
case VK_FORMAT_ASTC_12x12_SRGB_BLOCK: return createDFDCompressed(c_ASTC, 12, 12, 1, s_SRGB);
case VK_FORMAT_G8B8G8R8_422_UNORM: {
int channels[] = {0, 1, 0, 2}; int bits[] = {8, 8, 8, 8}; int shiftBits[] = {0, 0, 0, 0};
int position_xs[] = {64, 64, 192, 64}; int position_ys[] = {128, 128, 128, 128};
return createDFD422(0, 4, bits, shiftBits, channels, position_xs, position_ys, s_UNORM);
}
case VK_FORMAT_B8G8R8G8_422_UNORM: {
int channels[] = {1, 0, 2, 0}; int bits[] = {8, 8, 8, 8}; int shiftBits[] = {0, 0, 0, 0};
int position_xs[] = {64, 64, 64, 192}; int position_ys[] = {128, 128, 128, 128};
return createDFD422(0, 4, bits, shiftBits, channels, position_xs, position_ys, s_UNORM);
}
case VK_FORMAT_R10X6_UNORM_PACK16: {
int channels[] = {0}; int bits[] = {10}; int shiftBits[] = {6};
return createDFDPackedShifted(0, 1, bits, shiftBits, channels, s_UNORM);
}
case VK_FORMAT_R10X6G10X6_UNORM_2PACK16: {
int channels[] = {0, 1}; int bits[] = {10, 10}; int shiftBits[] = {6, 6};
return createDFDPackedShifted(0, 2, bits, shiftBits, channels, s_UNORM);
}
case VK_FORMAT_R10X6G10X6B10X6A10X6_UNORM_4PACK16: {
int channels[] = {0, 1, 2, 3}; int bits[] = {10, 10, 10, 10}; int shiftBits[] = {6, 6, 6, 6};
return createDFDPackedShifted(0, 4, bits, shiftBits, channels, s_UNORM);
}
case VK_FORMAT_G10X6B10X6G10X6R10X6_422_UNORM_4PACK16: {
int channels[] = {0, 1, 0, 2}; int bits[] = {10, 10, 10, 10}; int shiftBits[] = {6, 6, 6, 6};
int position_xs[] = {64, 64, 192, 64}; int position_ys[] = {128, 128, 128, 128};
return createDFD422(0, 4, bits, shiftBits, channels, position_xs, position_ys, s_UNORM);
}
case VK_FORMAT_B10X6G10X6R10X6G10X6_422_UNORM_4PACK16: {
int channels[] = {1, 0, 2, 0}; int bits[] = {10, 10, 10, 10}; int shiftBits[] = {6, 6, 6, 6};
int position_xs[] = {64, 64, 64, 192}; int position_ys[] = {128, 128, 128, 128};
return createDFD422(0, 4, bits, shiftBits, channels, position_xs, position_ys, s_UNORM);
}
case VK_FORMAT_R12X4_UNORM_PACK16: {
int channels[] = {0}; int bits[] = {12}; int shiftBits[] = {4};
return createDFDPackedShifted(0, 1, bits, shiftBits, channels, s_UNORM);
}
case VK_FORMAT_R12X4G12X4_UNORM_2PACK16: {
int channels[] = {0, 1}; int bits[] = {12, 12}; int shiftBits[] = {4, 4};
return createDFDPackedShifted(0, 2, bits, shiftBits, channels, s_UNORM);
}
case VK_FORMAT_R12X4G12X4B12X4A12X4_UNORM_4PACK16: {
int channels[] = {0, 1, 2, 3}; int bits[] = {12, 12, 12, 12}; int shiftBits[] = {4, 4, 4, 4};
return createDFDPackedShifted(0, 4, bits, shiftBits, channels, s_UNORM);
}
case VK_FORMAT_G12X4B12X4G12X4R12X4_422_UNORM_4PACK16: {
int channels[] = {0, 1, 0, 2}; int bits[] = {12, 12, 12, 12}; int shiftBits[] = {4, 4, 4, 4};
int position_xs[] = {64, 64, 192, 64}; int position_ys[] = {128, 128, 128, 128};
return createDFD422(0, 4, bits, shiftBits, channels, position_xs, position_ys, s_UNORM);
}
case VK_FORMAT_B12X4G12X4R12X4G12X4_422_UNORM_4PACK16: {
int channels[] = {1, 0, 2, 0}; int bits[] = {12, 12, 12, 12}; int shiftBits[] = {4, 4, 4, 4};
int position_xs[] = {64, 64, 64, 192}; int position_ys[] = {128, 128, 128, 128};
return createDFD422(0, 4, bits, shiftBits, channels, position_xs, position_ys, s_UNORM);
}
case VK_FORMAT_G16B16G16R16_422_UNORM: {
int channels[] = {0, 1, 0, 2}; int bits[] = {16, 16, 16, 16}; int shiftBits[] = {0, 0, 0, 0};
int position_xs[] = {64, 64, 192, 64}; int position_ys[] = {128, 128, 128, 128};
return createDFD422(0, 4, bits, shiftBits, channels, position_xs, position_ys, s_UNORM);
}
case VK_FORMAT_B16G16R16G16_422_UNORM: {
int channels[] = {1, 0, 2, 0}; int bits[] = {16, 16, 16, 16}; int shiftBits[] = {0, 0, 0, 0};
int position_xs[] = {64, 64, 64, 192}; int position_ys[] = {128, 128, 128, 128};
return createDFD422(0, 4, bits, shiftBits, channels, position_xs, position_ys, s_UNORM);
}
case VK_FORMAT_A4R4G4B4_UNORM_PACK16: {
int channels[] = {2,1,0,3}; int bits[] = {4,4,4,4};
return createDFDPacked(0, 4, bits, channels, s_UNORM);
}
case VK_FORMAT_A4B4G4R4_UNORM_PACK16: {
int channels[] = {0,1,2,3}; int bits[] = {4,4,4,4};
return createDFDPacked(0, 4, bits, channels, s_UNORM);
}
case VK_FORMAT_ASTC_4x4_SFLOAT_BLOCK: return createDFDCompressed(c_ASTC, 4, 4, 1, s_SFLOAT);
case VK_FORMAT_ASTC_5x4_SFLOAT_BLOCK: return createDFDCompressed(c_ASTC, 5, 4, 1, s_SFLOAT);
case VK_FORMAT_ASTC_5x5_SFLOAT_BLOCK: return createDFDCompressed(c_ASTC, 5, 5, 1, s_SFLOAT);
case VK_FORMAT_ASTC_6x5_SFLOAT_BLOCK: return createDFDCompressed(c_ASTC, 6, 5, 1, s_SFLOAT);
case VK_FORMAT_ASTC_6x6_SFLOAT_BLOCK: return createDFDCompressed(c_ASTC, 6, 6, 1, s_SFLOAT);
case VK_FORMAT_ASTC_8x5_SFLOAT_BLOCK: return createDFDCompressed(c_ASTC, 8, 5, 1, s_SFLOAT);
case VK_FORMAT_ASTC_8x6_SFLOAT_BLOCK: return createDFDCompressed(c_ASTC, 8, 6, 1, s_SFLOAT);
case VK_FORMAT_ASTC_8x8_SFLOAT_BLOCK: return createDFDCompressed(c_ASTC, 8, 8, 1, s_SFLOAT);
case VK_FORMAT_ASTC_10x5_SFLOAT_BLOCK: return createDFDCompressed(c_ASTC, 10, 5, 1, s_SFLOAT);
case VK_FORMAT_ASTC_10x6_SFLOAT_BLOCK: return createDFDCompressed(c_ASTC, 10, 6, 1, s_SFLOAT);
case VK_FORMAT_ASTC_10x8_SFLOAT_BLOCK: return createDFDCompressed(c_ASTC, 10, 8, 1, s_SFLOAT);
case VK_FORMAT_ASTC_10x10_SFLOAT_BLOCK: return createDFDCompressed(c_ASTC, 10, 10, 1, s_SFLOAT);
case VK_FORMAT_ASTC_12x10_SFLOAT_BLOCK: return createDFDCompressed(c_ASTC, 12, 10, 1, s_SFLOAT);
case VK_FORMAT_ASTC_12x12_SFLOAT_BLOCK: return createDFDCompressed(c_ASTC, 12, 12, 1, s_SFLOAT);
case VK_FORMAT_PVRTC1_2BPP_UNORM_BLOCK_IMG: return createDFDCompressed(c_PVRTC, 8, 4, 1, s_UNORM);
case VK_FORMAT_PVRTC1_4BPP_UNORM_BLOCK_IMG: return createDFDCompressed(c_PVRTC, 4, 4, 1, s_UNORM);
case VK_FORMAT_PVRTC2_2BPP_UNORM_BLOCK_IMG: return createDFDCompressed(c_PVRTC2, 8, 4, 1, s_UNORM);
case VK_FORMAT_PVRTC2_4BPP_UNORM_BLOCK_IMG: return createDFDCompressed(c_PVRTC2, 4, 4, 1, s_UNORM);
case VK_FORMAT_PVRTC1_2BPP_SRGB_BLOCK_IMG: return createDFDCompressed(c_PVRTC, 8, 4, 1, s_SRGB);
case VK_FORMAT_PVRTC1_4BPP_SRGB_BLOCK_IMG: return createDFDCompressed(c_PVRTC, 4, 4, 1, s_SRGB);
case VK_FORMAT_PVRTC2_2BPP_SRGB_BLOCK_IMG: return createDFDCompressed(c_PVRTC2, 8, 4, 1, s_SRGB);
case VK_FORMAT_PVRTC2_4BPP_SRGB_BLOCK_IMG: return createDFDCompressed(c_PVRTC2, 4, 4, 1, s_SRGB);
#if 0
case VK_FORMAT_ASTC_3x3x3_UNORM_BLOCK_EXT: return createDFDCompressed(c_ASTC, 3, 3, 3, s_UNORM);
case VK_FORMAT_ASTC_3x3x3_SRGB_BLOCK_EXT: return createDFDCompressed(c_ASTC, 3, 3, 3, s_SRGB);
case VK_FORMAT_ASTC_3x3x3_SFLOAT_BLOCK_EXT: return createDFDCompressed(c_ASTC, 3, 3, 3, s_SFLOAT);
case VK_FORMAT_ASTC_4x3x3_UNORM_BLOCK_EXT: return createDFDCompressed(c_ASTC, 4, 3, 3, s_UNORM);
case VK_FORMAT_ASTC_4x3x3_SRGB_BLOCK_EXT: return createDFDCompressed(c_ASTC, 4, 3, 3, s_SRGB);
case VK_FORMAT_ASTC_4x3x3_SFLOAT_BLOCK_EXT: return createDFDCompressed(c_ASTC, 4, 3, 3, s_SFLOAT);
case VK_FORMAT_ASTC_4x4x3_UNORM_BLOCK_EXT: return createDFDCompressed(c_ASTC, 4, 4, 3, s_UNORM);
case VK_FORMAT_ASTC_4x4x3_SRGB_BLOCK_EXT: return createDFDCompressed(c_ASTC, 4, 4, 3, s_SRGB);
case VK_FORMAT_ASTC_4x4x3_SFLOAT_BLOCK_EXT: return createDFDCompressed(c_ASTC, 4, 4, 3, s_SFLOAT);
case VK_FORMAT_ASTC_4x4x4_UNORM_BLOCK_EXT: return createDFDCompressed(c_ASTC, 4, 4, 4, s_UNORM);
case VK_FORMAT_ASTC_4x4x4_SRGB_BLOCK_EXT: return createDFDCompressed(c_ASTC, 4, 4, 4, s_SRGB);
case VK_FORMAT_ASTC_4x4x4_SFLOAT_BLOCK_EXT: return createDFDCompressed(c_ASTC, 4, 4, 4, s_SFLOAT);
case VK_FORMAT_ASTC_5x4x4_UNORM_BLOCK_EXT: return createDFDCompressed(c_ASTC, 5, 4, 4, s_UNORM);
case VK_FORMAT_ASTC_5x4x4_SRGB_BLOCK_EXT: return createDFDCompressed(c_ASTC, 5, 4, 4, s_SRGB);
case VK_FORMAT_ASTC_5x4x4_SFLOAT_BLOCK_EXT: return createDFDCompressed(c_ASTC, 5, 4, 4, s_SFLOAT);
case VK_FORMAT_ASTC_5x5x4_UNORM_BLOCK_EXT: return createDFDCompressed(c_ASTC, 5, 5, 4, s_UNORM);
case VK_FORMAT_ASTC_5x5x4_SRGB_BLOCK_EXT: return createDFDCompressed(c_ASTC, 5, 5, 4, s_SRGB);
case VK_FORMAT_ASTC_5x5x4_SFLOAT_BLOCK_EXT: return createDFDCompressed(c_ASTC, 5, 5, 4, s_SFLOAT);
case VK_FORMAT_ASTC_5x5x5_UNORM_BLOCK_EXT: return createDFDCompressed(c_ASTC, 5, 5, 5, s_UNORM);
case VK_FORMAT_ASTC_5x5x5_SRGB_BLOCK_EXT: return createDFDCompressed(c_ASTC, 5, 5, 5, s_SRGB);
case VK_FORMAT_ASTC_5x5x5_SFLOAT_BLOCK_EXT: return createDFDCompressed(c_ASTC, 5, 5, 5, s_SFLOAT);
case VK_FORMAT_ASTC_6x5x5_UNORM_BLOCK_EXT: return createDFDCompressed(c_ASTC, 6, 5, 5, s_UNORM);
case VK_FORMAT_ASTC_6x5x5_SRGB_BLOCK_EXT: return createDFDCompressed(c_ASTC, 6, 5, 5, s_SRGB);
case VK_FORMAT_ASTC_6x5x5_SFLOAT_BLOCK_EXT: return createDFDCompressed(c_ASTC, 6, 5, 5, s_SFLOAT);
case VK_FORMAT_ASTC_6x6x5_UNORM_BLOCK_EXT: return createDFDCompressed(c_ASTC, 6, 6, 5, s_UNORM);
case VK_FORMAT_ASTC_6x6x5_SRGB_BLOCK_EXT: return createDFDCompressed(c_ASTC, 6, 6, 5, s_SRGB);
case VK_FORMAT_ASTC_6x6x5_SFLOAT_BLOCK_EXT: return createDFDCompressed(c_ASTC, 6, 6, 5, s_SFLOAT);
case VK_FORMAT_ASTC_6x6x6_UNORM_BLOCK_EXT: return createDFDCompressed(c_ASTC, 6, 6, 6, s_UNORM);
case VK_FORMAT_ASTC_6x6x6_SRGB_BLOCK_EXT: return createDFDCompressed(c_ASTC, 6, 6, 6, s_SRGB);
case VK_FORMAT_ASTC_6x6x6_SFLOAT_BLOCK_EXT: return createDFDCompressed(c_ASTC, 6, 6, 6, s_SFLOAT);
#endif
case VK_FORMAT_R16G16_SFIXED5_NV: return createDFDUnpacked(0, 2, 2, 0, s_SFIXED5);
case VK_FORMAT_A1B5G5R5_UNORM_PACK16_KHR: {
int channels[] = {0,1,2,3}; int bits[] = {5,5,5,1};
return createDFDPacked(0, 4, bits, channels, s_UNORM);
}
case VK_FORMAT_A8_UNORM_KHR: return createDFDAlpha(0, 1, s_UNORM);