initial commit, 4.5 stable
Some checks failed
🔗 GHA / 📊 Static checks (push) Has been cancelled
🔗 GHA / 🤖 Android (push) Has been cancelled
🔗 GHA / 🍏 iOS (push) Has been cancelled
🔗 GHA / 🐧 Linux (push) Has been cancelled
🔗 GHA / 🍎 macOS (push) Has been cancelled
🔗 GHA / 🏁 Windows (push) Has been cancelled
🔗 GHA / 🌐 Web (push) Has been cancelled
Some checks failed
🔗 GHA / 📊 Static checks (push) Has been cancelled
🔗 GHA / 🤖 Android (push) Has been cancelled
🔗 GHA / 🍏 iOS (push) Has been cancelled
🔗 GHA / 🐧 Linux (push) Has been cancelled
🔗 GHA / 🍎 macOS (push) Has been cancelled
🔗 GHA / 🏁 Windows (push) Has been cancelled
🔗 GHA / 🌐 Web (push) Has been cancelled
This commit is contained in:
369
thirdparty/libtheora/enquant.c
vendored
Normal file
369
thirdparty/libtheora/enquant.c
vendored
Normal file
@@ -0,0 +1,369 @@
|
||||
/********************************************************************
|
||||
* *
|
||||
* THIS FILE IS PART OF THE OggTheora SOFTWARE CODEC SOURCE CODE. *
|
||||
* USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS *
|
||||
* GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE *
|
||||
* IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING. *
|
||||
* *
|
||||
* THE Theora SOURCE CODE IS COPYRIGHT (C) 2002-2009 *
|
||||
* by the Xiph.Org Foundation https://www.xiph.org/ *
|
||||
* *
|
||||
********************************************************************
|
||||
|
||||
function:
|
||||
|
||||
********************************************************************/
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include "encint.h"
|
||||
|
||||
|
||||
|
||||
int oc_quant_params_clone(th_quant_info *_dst,const th_quant_info *_src){
|
||||
int i;
|
||||
memcpy(_dst,_src,sizeof(*_dst));
|
||||
memset(_dst->qi_ranges,0,sizeof(_dst->qi_ranges));
|
||||
for(i=0;i<6;i++){
|
||||
int nranges;
|
||||
int qti;
|
||||
int pli;
|
||||
int qtj;
|
||||
int plj;
|
||||
int pdup;
|
||||
int qdup;
|
||||
qti=i/3;
|
||||
pli=i%3;
|
||||
qtj=(i-1)/3;
|
||||
plj=(i-1)%3;
|
||||
nranges=_src->qi_ranges[qti][pli].nranges;
|
||||
/*Check for those duplicates that can be cleanly handled by
|
||||
oc_quant_params_clear().*/
|
||||
pdup=i>0&&nranges<=_src->qi_ranges[qtj][plj].nranges;
|
||||
qdup=qti>0&&nranges<=_src->qi_ranges[0][pli].nranges;
|
||||
_dst->qi_ranges[qti][pli].nranges=nranges;
|
||||
if(pdup&&_src->qi_ranges[qti][pli].sizes==_src->qi_ranges[qtj][plj].sizes){
|
||||
_dst->qi_ranges[qti][pli].sizes=_dst->qi_ranges[qtj][plj].sizes;
|
||||
}
|
||||
else if(qdup&&_src->qi_ranges[1][pli].sizes==_src->qi_ranges[0][pli].sizes){
|
||||
_dst->qi_ranges[1][pli].sizes=_dst->qi_ranges[0][pli].sizes;
|
||||
}
|
||||
else{
|
||||
int *sizes;
|
||||
sizes=(int *)_ogg_malloc(nranges*sizeof(*sizes));
|
||||
/*Note: The caller is responsible for cleaning up any partially
|
||||
constructed qinfo.*/
|
||||
if(sizes==NULL)return TH_EFAULT;
|
||||
memcpy(sizes,_src->qi_ranges[qti][pli].sizes,nranges*sizeof(*sizes));
|
||||
_dst->qi_ranges[qti][pli].sizes=sizes;
|
||||
}
|
||||
if(pdup&&_src->qi_ranges[qti][pli].base_matrices==
|
||||
_src->qi_ranges[qtj][plj].base_matrices){
|
||||
_dst->qi_ranges[qti][pli].base_matrices=
|
||||
_dst->qi_ranges[qtj][plj].base_matrices;
|
||||
}
|
||||
else if(qdup&&_src->qi_ranges[1][pli].base_matrices==
|
||||
_src->qi_ranges[0][pli].base_matrices){
|
||||
_dst->qi_ranges[1][pli].base_matrices=
|
||||
_dst->qi_ranges[0][pli].base_matrices;
|
||||
}
|
||||
else{
|
||||
th_quant_base *base_matrices;
|
||||
base_matrices=(th_quant_base *)_ogg_malloc(
|
||||
(nranges+1)*sizeof(*base_matrices));
|
||||
/*Note: The caller is responsible for cleaning up any partially
|
||||
constructed qinfo.*/
|
||||
if(base_matrices==NULL)return TH_EFAULT;
|
||||
memcpy(base_matrices,_src->qi_ranges[qti][pli].base_matrices,
|
||||
(nranges+1)*sizeof(*base_matrices));
|
||||
_dst->qi_ranges[qti][pli].base_matrices=
|
||||
(const th_quant_base *)base_matrices;
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
void oc_quant_params_pack(oggpack_buffer *_opb,const th_quant_info *_qinfo){
|
||||
const th_quant_ranges *qranges;
|
||||
const th_quant_base *base_mats[2*3*64];
|
||||
int indices[2][3][64];
|
||||
int nbase_mats;
|
||||
int nbits;
|
||||
int ci;
|
||||
int qi;
|
||||
int qri;
|
||||
int qti;
|
||||
int pli;
|
||||
int qtj;
|
||||
int plj;
|
||||
int bmi;
|
||||
int i;
|
||||
i=_qinfo->loop_filter_limits[0];
|
||||
for(qi=1;qi<64;qi++)i=OC_MAXI(i,_qinfo->loop_filter_limits[qi]);
|
||||
nbits=OC_ILOG_32(i);
|
||||
oggpackB_write(_opb,nbits,3);
|
||||
for(qi=0;qi<64;qi++){
|
||||
oggpackB_write(_opb,_qinfo->loop_filter_limits[qi],nbits);
|
||||
}
|
||||
/*580 bits for VP3.*/
|
||||
i=1;
|
||||
for(qi=0;qi<64;qi++)i=OC_MAXI(_qinfo->ac_scale[qi],i);
|
||||
nbits=OC_ILOGNZ_32(i);
|
||||
oggpackB_write(_opb,nbits-1,4);
|
||||
for(qi=0;qi<64;qi++)oggpackB_write(_opb,_qinfo->ac_scale[qi],nbits);
|
||||
/*516 bits for VP3.*/
|
||||
i=1;
|
||||
for(qi=0;qi<64;qi++)i=OC_MAXI(_qinfo->dc_scale[qi],i);
|
||||
nbits=OC_ILOGNZ_32(i);
|
||||
oggpackB_write(_opb,nbits-1,4);
|
||||
for(qi=0;qi<64;qi++)oggpackB_write(_opb,_qinfo->dc_scale[qi],nbits);
|
||||
/*Consolidate any duplicate base matrices.*/
|
||||
nbase_mats=0;
|
||||
for(qti=0;qti<2;qti++)for(pli=0;pli<3;pli++){
|
||||
qranges=_qinfo->qi_ranges[qti]+pli;
|
||||
for(qri=0;qri<=qranges->nranges;qri++){
|
||||
for(bmi=0;;bmi++){
|
||||
if(bmi>=nbase_mats){
|
||||
base_mats[bmi]=qranges->base_matrices+qri;
|
||||
indices[qti][pli][qri]=nbase_mats++;
|
||||
break;
|
||||
}
|
||||
else if(memcmp(base_mats[bmi][0],qranges->base_matrices[qri],
|
||||
sizeof(base_mats[bmi][0]))==0){
|
||||
indices[qti][pli][qri]=bmi;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
/*Write out the list of unique base matrices.
|
||||
1545 bits for VP3 matrices.*/
|
||||
oggpackB_write(_opb,nbase_mats-1,9);
|
||||
for(bmi=0;bmi<nbase_mats;bmi++){
|
||||
for(ci=0;ci<64;ci++)oggpackB_write(_opb,base_mats[bmi][0][ci],8);
|
||||
}
|
||||
/*Now store quant ranges and their associated indices into the base matrix
|
||||
list.
|
||||
46 bits for VP3 matrices.*/
|
||||
nbits=OC_ILOG_32(nbase_mats-1);
|
||||
for(i=0;i<6;i++){
|
||||
qti=i/3;
|
||||
pli=i%3;
|
||||
qranges=_qinfo->qi_ranges[qti]+pli;
|
||||
if(i>0){
|
||||
if(qti>0){
|
||||
if(qranges->nranges==_qinfo->qi_ranges[qti-1][pli].nranges&&
|
||||
memcmp(qranges->sizes,_qinfo->qi_ranges[qti-1][pli].sizes,
|
||||
qranges->nranges*sizeof(qranges->sizes[0]))==0&&
|
||||
memcmp(indices[qti][pli],indices[qti-1][pli],
|
||||
(qranges->nranges+1)*sizeof(indices[qti][pli][0]))==0){
|
||||
oggpackB_write(_opb,1,2);
|
||||
continue;
|
||||
}
|
||||
}
|
||||
qtj=(i-1)/3;
|
||||
plj=(i-1)%3;
|
||||
if(qranges->nranges==_qinfo->qi_ranges[qtj][plj].nranges&&
|
||||
memcmp(qranges->sizes,_qinfo->qi_ranges[qtj][plj].sizes,
|
||||
qranges->nranges*sizeof(qranges->sizes[0]))==0&&
|
||||
memcmp(indices[qti][pli],indices[qtj][plj],
|
||||
(qranges->nranges+1)*sizeof(indices[qti][pli][0]))==0){
|
||||
oggpackB_write(_opb,0,1+(qti>0));
|
||||
continue;
|
||||
}
|
||||
oggpackB_write(_opb,1,1);
|
||||
}
|
||||
oggpackB_write(_opb,indices[qti][pli][0],nbits);
|
||||
for(qi=qri=0;qi<63;qri++){
|
||||
oggpackB_write(_opb,qranges->sizes[qri]-1,OC_ILOG_32(62-qi));
|
||||
qi+=qranges->sizes[qri];
|
||||
oggpackB_write(_opb,indices[qti][pli][qri+1],nbits);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void oc_iquant_init(oc_iquant *_this,ogg_uint16_t _d){
|
||||
ogg_uint32_t t;
|
||||
int l;
|
||||
_d<<=1;
|
||||
l=OC_ILOGNZ_32(_d)-1;
|
||||
t=1+((ogg_uint32_t)1<<16+l)/_d;
|
||||
_this->m=(ogg_int16_t)(t-0x10000);
|
||||
_this->l=l;
|
||||
}
|
||||
|
||||
void oc_enc_enquant_table_init_c(void *_enquant,
|
||||
const ogg_uint16_t _dequant[64]){
|
||||
oc_iquant *enquant;
|
||||
int zzi;
|
||||
/*In the original VP3.2 code, the rounding offset and the size of the
|
||||
dead zone around 0 were controlled by a "sharpness" parameter.
|
||||
We now R-D optimize the tokens for each block after quantization,
|
||||
so the rounding offset should always be 1/2, and an explicit dead
|
||||
zone is unnecessary.
|
||||
Hence, all of that VP3.2 code is gone from here, and the remaining
|
||||
floating point code has been implemented as equivalent integer
|
||||
code with exact precision.*/
|
||||
enquant=(oc_iquant *)_enquant;
|
||||
for(zzi=0;zzi<64;zzi++)oc_iquant_init(enquant+zzi,_dequant[zzi]);
|
||||
}
|
||||
|
||||
void oc_enc_enquant_table_fixup_c(void *_enquant[3][3][2],int _nqis){
|
||||
int pli;
|
||||
int qii;
|
||||
int qti;
|
||||
for(pli=0;pli<3;pli++)for(qii=1;qii<_nqis;qii++)for(qti=0;qti<2;qti++){
|
||||
*((oc_iquant *)_enquant[pli][qii][qti])=
|
||||
*((oc_iquant *)_enquant[pli][0][qti]);
|
||||
}
|
||||
}
|
||||
|
||||
int oc_enc_quantize_c(ogg_int16_t _qdct[64],const ogg_int16_t _dct[64],
|
||||
const ogg_uint16_t _dequant[64],const void *_enquant){
|
||||
const oc_iquant *enquant;
|
||||
int nonzero;
|
||||
int zzi;
|
||||
int val;
|
||||
int d;
|
||||
int s;
|
||||
enquant=(const oc_iquant *)_enquant;
|
||||
nonzero=0;
|
||||
for(zzi=0;zzi<64;zzi++){
|
||||
val=_dct[zzi];
|
||||
d=_dequant[zzi];
|
||||
val=val<<1;
|
||||
if(abs(val)>=d){
|
||||
s=OC_SIGNMASK(val);
|
||||
/*The bias added here rounds ties away from zero, since token
|
||||
optimization can only decrease the magnitude of the quantized
|
||||
value.*/
|
||||
val+=d+s^s;
|
||||
/*Note the arithmetic right shift is not guaranteed by ANSI C.
|
||||
Hopefully no one still uses ones-complement architectures.*/
|
||||
val=((enquant[zzi].m*(ogg_int32_t)val>>16)+val>>enquant[zzi].l)-s;
|
||||
_qdct[zzi]=(ogg_int16_t)val;
|
||||
nonzero=zzi;
|
||||
}
|
||||
else _qdct[zzi]=0;
|
||||
}
|
||||
return nonzero;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/*This table gives the square root of the fraction of the squared magnitude of
|
||||
each DCT coefficient relative to the total, scaled by 2**16, for both INTRA
|
||||
and INTER modes.
|
||||
These values were measured after motion-compensated prediction, before
|
||||
quantization, over a large set of test video (from QCIF to 1080p) encoded at
|
||||
all possible rates.
|
||||
The DC coefficient takes into account the DPCM prediction (using the
|
||||
quantized values from neighboring blocks, as the encoder does, but still
|
||||
before quantization of the coefficient in the current block).
|
||||
The results differ significantly from the expected variance (e.g., using an
|
||||
AR(1) model of the signal with rho=0.95, as is frequently done to compute
|
||||
the coding gain of the DCT).
|
||||
We use them to estimate an "average" quantizer for a given quantizer matrix,
|
||||
as this is used to parameterize a number of the rate control decisions.
|
||||
These values are themselves probably quantizer-matrix dependent, since the
|
||||
shape of the matrix affects the noise distribution in the reference frames,
|
||||
but they should at least give us _some_ amount of adaptivity to different
|
||||
matrices, as opposed to hard-coding a table of average Q values for the
|
||||
current set.
|
||||
The main features they capture are that a) only a few of the quantizers in
|
||||
the upper-left corner contribute anything significant at all (though INTER
|
||||
mode is significantly flatter) and b) the DPCM prediction of the DC
|
||||
coefficient gives a very minor improvement in the INTRA case and a quite
|
||||
significant one in the INTER case (over the expected variance).*/
|
||||
static const ogg_uint16_t OC_RPSD[2][64]={
|
||||
{
|
||||
52725,17370,10399, 6867, 5115, 3798, 2942, 2076,
|
||||
17370, 9900, 6948, 4994, 3836, 2869, 2229, 1619,
|
||||
10399, 6948, 5516, 4202, 3376, 2573, 2015, 1461,
|
||||
6867, 4994, 4202, 3377, 2800, 2164, 1718, 1243,
|
||||
5115, 3836, 3376, 2800, 2391, 1884, 1530, 1091,
|
||||
3798, 2869, 2573, 2164, 1884, 1495, 1212, 873,
|
||||
2942, 2229, 2015, 1718, 1530, 1212, 1001, 704,
|
||||
2076, 1619, 1461, 1243, 1091, 873, 704, 474
|
||||
},
|
||||
{
|
||||
23411,15604,13529,11601,10683, 8958, 7840, 6142,
|
||||
15604,11901,10718, 9108, 8290, 6961, 6023, 4487,
|
||||
13529,10718, 9961, 8527, 7945, 6689, 5742, 4333,
|
||||
11601, 9108, 8527, 7414, 7084, 5923, 5175, 3743,
|
||||
10683, 8290, 7945, 7084, 6771, 5754, 4793, 3504,
|
||||
8958, 6961, 6689, 5923, 5754, 4679, 3936, 2989,
|
||||
7840, 6023, 5742, 5175, 4793, 3936, 3522, 2558,
|
||||
6142, 4487, 4333, 3743, 3504, 2989, 2558, 1829
|
||||
}
|
||||
};
|
||||
|
||||
/*The fraction of the squared magnitude of the residuals in each color channel
|
||||
relative to the total, scaled by 2**16, for each pixel format.
|
||||
These values were measured after motion-compensated prediction, before
|
||||
quantization, over a large set of test video encoded at all possible rates.
|
||||
TODO: These values are only from INTER frames; they should be re-measured for
|
||||
INTRA frames.*/
|
||||
static const ogg_uint16_t OC_PCD[4][3]={
|
||||
{59926, 3038, 2572},
|
||||
{55201, 5597, 4738},
|
||||
{55201, 5597, 4738},
|
||||
{47682, 9669, 8185}
|
||||
};
|
||||
|
||||
|
||||
/*Compute "average" quantizers for each qi level to use for rate control.
|
||||
We do one for each color channel, as well as an average across color
|
||||
channels, separately for INTER and INTRA, since their behavior is very
|
||||
different.
|
||||
The basic approach is to compute a harmonic average of the squared quantizer,
|
||||
weighted by the expected squared magnitude of the DCT coefficients.
|
||||
Under the (not quite true) assumption that DCT coefficients are
|
||||
Laplacian-distributed, this preserves the product Q*lambda, where
|
||||
lambda=sqrt(2/sigma**2) is the Laplacian distribution parameter (not to be
|
||||
confused with the lambda used in R-D optimization throughout most of the
|
||||
rest of the code), when the distributions from multiple coefficients are
|
||||
pooled.
|
||||
The value Q*lambda completely determines the entropy of coefficients drawn
|
||||
from a Laplacian distribution, and thus the expected bitrate.*/
|
||||
void oc_enquant_qavg_init(ogg_int64_t _log_qavg[2][64],
|
||||
ogg_int16_t _log_plq[64][3][2],ogg_uint16_t _chroma_rd_scale[2][64][2],
|
||||
ogg_uint16_t *_dequant[64][3][2],int _pixel_fmt){
|
||||
int qi;
|
||||
int pli;
|
||||
int qti;
|
||||
int ci;
|
||||
for(qti=0;qti<2;qti++)for(qi=0;qi<64;qi++){
|
||||
ogg_int64_t q2;
|
||||
ogg_uint32_t qp[3];
|
||||
ogg_uint32_t cqp;
|
||||
ogg_uint32_t d;
|
||||
q2=0;
|
||||
for(pli=0;pli<3;pli++){
|
||||
qp[pli]=0;
|
||||
for(ci=0;ci<64;ci++){
|
||||
unsigned rq;
|
||||
unsigned qd;
|
||||
qd=_dequant[qi][pli][qti][OC_IZIG_ZAG[ci]];
|
||||
rq=(OC_RPSD[qti][ci]+(qd>>1))/qd;
|
||||
qp[pli]+=rq*(ogg_uint32_t)rq;
|
||||
}
|
||||
q2+=OC_PCD[_pixel_fmt][pli]*(ogg_int64_t)qp[pli];
|
||||
/*plq=1.0/sqrt(qp)*/
|
||||
_log_plq[qi][pli][qti]=
|
||||
(ogg_int16_t)(OC_Q10(32)-oc_blog32_q10(qp[pli])>>1);
|
||||
}
|
||||
d=OC_PCD[_pixel_fmt][1]+OC_PCD[_pixel_fmt][2];
|
||||
cqp=(ogg_uint32_t)((OC_PCD[_pixel_fmt][1]*(ogg_int64_t)qp[1]+
|
||||
OC_PCD[_pixel_fmt][2]*(ogg_int64_t)qp[2]+(d>>1))/d);
|
||||
/*chroma_rd_scale=clamp(0.25,cqp/qp[0],4)*/
|
||||
d=OC_MAXI(qp[0]+(1<<OC_RD_SCALE_BITS-1)>>OC_RD_SCALE_BITS,1);
|
||||
d=OC_CLAMPI(1<<OC_RD_SCALE_BITS-2,(cqp+(d>>1))/d,4<<OC_RD_SCALE_BITS);
|
||||
_chroma_rd_scale[qti][qi][0]=(ogg_int16_t)d;
|
||||
/*chroma_rd_iscale=clamp(0.25,qp[0]/cqp,4)*/
|
||||
d=OC_MAXI(OC_RD_ISCALE(cqp,1),1);
|
||||
d=OC_CLAMPI(1<<OC_RD_ISCALE_BITS-2,(qp[0]+(d>>1))/d,4<<OC_RD_ISCALE_BITS);
|
||||
_chroma_rd_scale[qti][qi][1]=(ogg_int16_t)d;
|
||||
/*qavg=1.0/sqrt(q2).*/
|
||||
_log_qavg[qti][qi]=OC_Q57(48)-oc_blog64(q2)>>1;
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user