initial commit, 4.5 stable
Some checks failed
🔗 GHA / 📊 Static checks (push) Has been cancelled
🔗 GHA / 🤖 Android (push) Has been cancelled
🔗 GHA / 🍏 iOS (push) Has been cancelled
🔗 GHA / 🐧 Linux (push) Has been cancelled
🔗 GHA / 🍎 macOS (push) Has been cancelled
🔗 GHA / 🏁 Windows (push) Has been cancelled
🔗 GHA / 🌐 Web (push) Has been cancelled
Some checks failed
🔗 GHA / 📊 Static checks (push) Has been cancelled
🔗 GHA / 🤖 Android (push) Has been cancelled
🔗 GHA / 🍏 iOS (push) Has been cancelled
🔗 GHA / 🐧 Linux (push) Has been cancelled
🔗 GHA / 🍎 macOS (push) Has been cancelled
🔗 GHA / 🏁 Windows (push) Has been cancelled
🔗 GHA / 🌐 Web (push) Has been cancelled
This commit is contained in:
126
thirdparty/meshoptimizer/indexanalyzer.cpp
vendored
Normal file
126
thirdparty/meshoptimizer/indexanalyzer.cpp
vendored
Normal file
@@ -0,0 +1,126 @@
|
||||
// This file is part of meshoptimizer library; see meshoptimizer.h for version/license details
|
||||
#include "meshoptimizer.h"
|
||||
|
||||
#include <assert.h>
|
||||
#include <string.h>
|
||||
|
||||
meshopt_VertexCacheStatistics meshopt_analyzeVertexCache(const unsigned int* indices, size_t index_count, size_t vertex_count, unsigned int cache_size, unsigned int warp_size, unsigned int primgroup_size)
|
||||
{
|
||||
assert(index_count % 3 == 0);
|
||||
assert(cache_size >= 3);
|
||||
assert(warp_size == 0 || warp_size >= 3);
|
||||
|
||||
meshopt_Allocator allocator;
|
||||
|
||||
meshopt_VertexCacheStatistics result = {};
|
||||
|
||||
unsigned int warp_offset = 0;
|
||||
unsigned int primgroup_offset = 0;
|
||||
|
||||
unsigned int* cache_timestamps = allocator.allocate<unsigned int>(vertex_count);
|
||||
memset(cache_timestamps, 0, vertex_count * sizeof(unsigned int));
|
||||
|
||||
unsigned int timestamp = cache_size + 1;
|
||||
|
||||
for (size_t i = 0; i < index_count; i += 3)
|
||||
{
|
||||
unsigned int a = indices[i + 0], b = indices[i + 1], c = indices[i + 2];
|
||||
assert(a < vertex_count && b < vertex_count && c < vertex_count);
|
||||
|
||||
bool ac = (timestamp - cache_timestamps[a]) > cache_size;
|
||||
bool bc = (timestamp - cache_timestamps[b]) > cache_size;
|
||||
bool cc = (timestamp - cache_timestamps[c]) > cache_size;
|
||||
|
||||
// flush cache if triangle doesn't fit into warp or into the primitive buffer
|
||||
if ((primgroup_size && primgroup_offset == primgroup_size) || (warp_size && warp_offset + ac + bc + cc > warp_size))
|
||||
{
|
||||
result.warps_executed += warp_offset > 0;
|
||||
|
||||
warp_offset = 0;
|
||||
primgroup_offset = 0;
|
||||
|
||||
// reset cache
|
||||
timestamp += cache_size + 1;
|
||||
}
|
||||
|
||||
// update cache and add vertices to warp
|
||||
for (int j = 0; j < 3; ++j)
|
||||
{
|
||||
unsigned int index = indices[i + j];
|
||||
|
||||
if (timestamp - cache_timestamps[index] > cache_size)
|
||||
{
|
||||
cache_timestamps[index] = timestamp++;
|
||||
result.vertices_transformed++;
|
||||
warp_offset++;
|
||||
}
|
||||
}
|
||||
|
||||
primgroup_offset++;
|
||||
}
|
||||
|
||||
size_t unique_vertex_count = 0;
|
||||
|
||||
for (size_t i = 0; i < vertex_count; ++i)
|
||||
unique_vertex_count += cache_timestamps[i] > 0;
|
||||
|
||||
result.warps_executed += warp_offset > 0;
|
||||
|
||||
result.acmr = index_count == 0 ? 0 : float(result.vertices_transformed) / float(index_count / 3);
|
||||
result.atvr = unique_vertex_count == 0 ? 0 : float(result.vertices_transformed) / float(unique_vertex_count);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
meshopt_VertexFetchStatistics meshopt_analyzeVertexFetch(const unsigned int* indices, size_t index_count, size_t vertex_count, size_t vertex_size)
|
||||
{
|
||||
assert(index_count % 3 == 0);
|
||||
assert(vertex_size > 0 && vertex_size <= 256);
|
||||
|
||||
meshopt_Allocator allocator;
|
||||
|
||||
meshopt_VertexFetchStatistics result = {};
|
||||
|
||||
unsigned char* vertex_visited = allocator.allocate<unsigned char>(vertex_count);
|
||||
memset(vertex_visited, 0, vertex_count);
|
||||
|
||||
const size_t kCacheLine = 64;
|
||||
const size_t kCacheSize = 128 * 1024;
|
||||
|
||||
// simple direct mapped cache; on typical mesh data this is close to 4-way cache, and this model is a gross approximation anyway
|
||||
size_t cache[kCacheSize / kCacheLine] = {};
|
||||
|
||||
for (size_t i = 0; i < index_count; ++i)
|
||||
{
|
||||
unsigned int index = indices[i];
|
||||
assert(index < vertex_count);
|
||||
|
||||
vertex_visited[index] = 1;
|
||||
|
||||
size_t start_address = index * vertex_size;
|
||||
size_t end_address = start_address + vertex_size;
|
||||
|
||||
size_t start_tag = start_address / kCacheLine;
|
||||
size_t end_tag = (end_address + kCacheLine - 1) / kCacheLine;
|
||||
|
||||
assert(start_tag < end_tag);
|
||||
|
||||
for (size_t tag = start_tag; tag < end_tag; ++tag)
|
||||
{
|
||||
size_t line = tag % (sizeof(cache) / sizeof(cache[0]));
|
||||
|
||||
// we store +1 since cache is filled with 0 by default
|
||||
result.bytes_fetched += (cache[line] != tag + 1) * kCacheLine;
|
||||
cache[line] = tag + 1;
|
||||
}
|
||||
}
|
||||
|
||||
size_t unique_vertex_count = 0;
|
||||
|
||||
for (size_t i = 0; i < vertex_count; ++i)
|
||||
unique_vertex_count += vertex_visited[i];
|
||||
|
||||
result.overfetch = unique_vertex_count == 0 ? 0 : float(result.bytes_fetched) / float(unique_vertex_count * vertex_size);
|
||||
|
||||
return result;
|
||||
}
|
Reference in New Issue
Block a user