// This file is part of meshoptimizer library; see meshoptimizer.h for version/license details #include "meshoptimizer.h" #include #include // The block below auto-detects SIMD ISA that can be used on the target platform #ifndef MESHOPTIMIZER_NO_SIMD // The SIMD implementation requires SSSE3, which can be enabled unconditionally through compiler settings #if defined(__AVX__) || defined(__SSSE3__) #define SIMD_SSE #endif // An experimental implementation using AVX512 instructions; it's only enabled when AVX512 is enabled through compiler settings #if defined(__AVX512VBMI2__) && defined(__AVX512VBMI__) && defined(__AVX512VL__) && defined(__POPCNT__) #undef SIMD_SSE #define SIMD_AVX #endif // MSVC supports compiling SSSE3 code regardless of compile options; we use a cpuid-based scalar fallback #if !defined(SIMD_SSE) && !defined(SIMD_AVX) && defined(_MSC_VER) && !defined(__clang__) && (defined(_M_IX86) || defined(_M_X64)) #define SIMD_SSE #define SIMD_FALLBACK #endif // GCC 4.9+ and clang 3.8+ support targeting SIMD ISA from individual functions; we use a cpuid-based scalar fallback #if !defined(SIMD_SSE) && !defined(SIMD_AVX) && ((defined(__clang__) && __clang_major__ * 100 + __clang_minor__ >= 308) || (defined(__GNUC__) && __GNUC__ * 100 + __GNUC_MINOR__ >= 409)) && (defined(__i386__) || defined(__x86_64__)) #define SIMD_SSE #define SIMD_FALLBACK #define SIMD_TARGET __attribute__((target("ssse3"))) #endif // GCC/clang define these when NEON support is available #if defined(__ARM_NEON__) || defined(__ARM_NEON) #define SIMD_NEON #endif // On MSVC, we assume that ARM builds always target NEON-capable devices #if !defined(SIMD_NEON) && defined(_MSC_VER) && (defined(_M_ARM) || defined(_M_ARM64)) #define SIMD_NEON #endif // When targeting Wasm SIMD we can't use runtime cpuid checks so we unconditionally enable SIMD #if defined(__wasm_simd128__) #define SIMD_WASM // Prevent compiling other variant when wasm simd compilation is active #undef SIMD_NEON #undef SIMD_SSE #undef SIMD_AVX #endif #ifndef SIMD_TARGET #define SIMD_TARGET #endif // When targeting AArch64/x64, optimize for latency to allow decoding of individual 16-byte groups to overlap // We don't do this for 32-bit systems because we need 64-bit math for this and this will hurt in-order CPUs #if defined(__x86_64__) || defined(_M_X64) || defined(__aarch64__) || defined(_M_ARM64) #define SIMD_LATENCYOPT #endif // In switch dispatch, marking default case as unreachable allows to remove redundant bounds checks #if defined(__GNUC__) #define SIMD_UNREACHABLE() __builtin_unreachable() #elif defined(_MSC_VER) #define SIMD_UNREACHABLE() __assume(false) #else #define SIMD_UNREACHABLE() assert(!"Unreachable") #endif #endif // !MESHOPTIMIZER_NO_SIMD #ifdef SIMD_SSE #include #endif #if defined(SIMD_SSE) && defined(SIMD_FALLBACK) #ifdef _MSC_VER #include // __cpuid #else #include // __cpuid #endif #endif #ifdef SIMD_AVX #include #endif #ifdef SIMD_NEON #if defined(_MSC_VER) && defined(_M_ARM64) #include #else #include #endif #endif #ifdef SIMD_WASM #include #endif #ifndef TRACE #define TRACE 0 #endif #if TRACE #include #endif #ifdef SIMD_WASM #define wasmx_splat_v32x4(v, i) wasm_i32x4_shuffle(v, v, i, i, i, i) #define wasmx_unpacklo_v8x16(a, b) wasm_i8x16_shuffle(a, b, 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23) #define wasmx_unpackhi_v8x16(a, b) wasm_i8x16_shuffle(a, b, 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31) #define wasmx_unpacklo_v16x8(a, b) wasm_i16x8_shuffle(a, b, 0, 8, 1, 9, 2, 10, 3, 11) #define wasmx_unpackhi_v16x8(a, b) wasm_i16x8_shuffle(a, b, 4, 12, 5, 13, 6, 14, 7, 15) #define wasmx_unpacklo_v64x2(a, b) wasm_i64x2_shuffle(a, b, 0, 2) #define wasmx_unpackhi_v64x2(a, b) wasm_i64x2_shuffle(a, b, 1, 3) #endif namespace meshopt { const unsigned char kVertexHeader = 0xa0; static int gEncodeVertexVersion = 0; const int kDecodeVertexVersion = 1; const size_t kVertexBlockSizeBytes = 8192; const size_t kVertexBlockMaxSize = 256; const size_t kByteGroupSize = 16; const size_t kByteGroupDecodeLimit = 24; const size_t kTailMinSizeV0 = 32; const size_t kTailMinSizeV1 = 24; static const int kBitsV0[4] = {0, 2, 4, 8}; static const int kBitsV1[5] = {0, 1, 2, 4, 8}; const int kEncodeDefaultLevel = 2; static size_t getVertexBlockSize(size_t vertex_size) { // make sure the entire block fits into the scratch buffer and is aligned to byte group size // note: the block size is implicitly part of the format, so we can't change it without breaking compatibility size_t result = (kVertexBlockSizeBytes / vertex_size) & ~(kByteGroupSize - 1); return (result < kVertexBlockMaxSize) ? result : kVertexBlockMaxSize; } inline unsigned int rotate(unsigned int v, int r) { return (v << r) | (v >> ((32 - r) & 31)); } template inline T zigzag(T v) { return (0 - (v >> (sizeof(T) * 8 - 1))) ^ (v << 1); } template inline T unzigzag(T v) { return (0 - (v & 1)) ^ (v >> 1); } #if TRACE struct Stats { size_t size; size_t header; // bytes for header size_t bitg[9]; // bytes for bit groups size_t bitc[8]; // bit consistency: how many bits are shared between all bytes in a group size_t ctrl[4]; // number of control groups }; static Stats* bytestats = NULL; static Stats vertexstats[256]; #endif static bool encodeBytesGroupZero(const unsigned char* buffer) { assert(kByteGroupSize == sizeof(unsigned long long) * 2); unsigned long long v[2]; memcpy(v, buffer, sizeof(v)); return (v[0] | v[1]) == 0; } static size_t encodeBytesGroupMeasure(const unsigned char* buffer, int bits) { assert(bits >= 0 && bits <= 8); if (bits == 0) return encodeBytesGroupZero(buffer) ? 0 : size_t(-1); if (bits == 8) return kByteGroupSize; size_t result = kByteGroupSize * bits / 8; unsigned char sentinel = (1 << bits) - 1; for (size_t i = 0; i < kByteGroupSize; ++i) result += buffer[i] >= sentinel; return result; } static unsigned char* encodeBytesGroup(unsigned char* data, const unsigned char* buffer, int bits) { assert(bits >= 0 && bits <= 8); assert(kByteGroupSize % 8 == 0); if (bits == 0) return data; if (bits == 8) { memcpy(data, buffer, kByteGroupSize); return data + kByteGroupSize; } size_t byte_size = 8 / bits; assert(kByteGroupSize % byte_size == 0); // fixed portion: bits bits for each value // variable portion: full byte for each out-of-range value (using 1...1 as sentinel) unsigned char sentinel = (1 << bits) - 1; for (size_t i = 0; i < kByteGroupSize; i += byte_size) { unsigned char byte = 0; for (size_t k = 0; k < byte_size; ++k) { unsigned char enc = (buffer[i + k] >= sentinel) ? sentinel : buffer[i + k]; byte <<= bits; byte |= enc; } // encode 1-bit groups in reverse bit order // this makes them faster to decode alongside other groups if (bits == 1) byte = (unsigned char)(((byte * 0x80200802ull) & 0x0884422110ull) * 0x0101010101ull >> 32); *data++ = byte; } for (size_t i = 0; i < kByteGroupSize; ++i) { unsigned char v = buffer[i]; // branchless append of out-of-range values *data = v; data += v >= sentinel; } return data; } static unsigned char* encodeBytes(unsigned char* data, unsigned char* data_end, const unsigned char* buffer, size_t buffer_size, const int bits[4]) { assert(buffer_size % kByteGroupSize == 0); unsigned char* header = data; // round number of groups to 4 to get number of header bytes size_t header_size = (buffer_size / kByteGroupSize + 3) / 4; if (size_t(data_end - data) < header_size) return NULL; data += header_size; memset(header, 0, header_size); int last_bits = -1; for (size_t i = 0; i < buffer_size; i += kByteGroupSize) { if (size_t(data_end - data) < kByteGroupDecodeLimit) return NULL; int best_bitk = 3; size_t best_size = encodeBytesGroupMeasure(buffer + i, bits[best_bitk]); for (int bitk = 0; bitk < 3; ++bitk) { size_t size = encodeBytesGroupMeasure(buffer + i, bits[bitk]); // favor consistent bit selection across groups, but never replace literals if (size < best_size || (size == best_size && bits[bitk] == last_bits && bits[best_bitk] != 8)) { best_bitk = bitk; best_size = size; } } size_t header_offset = i / kByteGroupSize; header[header_offset / 4] |= best_bitk << ((header_offset % 4) * 2); int best_bits = bits[best_bitk]; unsigned char* next = encodeBytesGroup(data, buffer + i, best_bits); assert(data + best_size == next); data = next; last_bits = best_bits; #if TRACE bytestats->bitg[best_bits] += best_size; #endif } #if TRACE bytestats->header += header_size; #endif return data; } template static void encodeDeltas1(unsigned char* buffer, const unsigned char* vertex_data, size_t vertex_count, size_t vertex_size, const unsigned char last_vertex[256], size_t k, int rot) { size_t k0 = k & ~(sizeof(T) - 1); int ks = (k & (sizeof(T) - 1)) * 8; T p = last_vertex[k0]; for (size_t j = 1; j < sizeof(T); ++j) p |= T(last_vertex[k0 + j]) << (j * 8); const unsigned char* vertex = vertex_data + k0; for (size_t i = 0; i < vertex_count; ++i) { T v = vertex[0]; for (size_t j = 1; j < sizeof(T); ++j) v |= vertex[j] << (j * 8); T d = Xor ? T(rotate(v ^ p, rot)) : zigzag(T(v - p)); buffer[i] = (unsigned char)(d >> ks); p = v; vertex += vertex_size; } } static void encodeDeltas(unsigned char* buffer, const unsigned char* vertex_data, size_t vertex_count, size_t vertex_size, const unsigned char last_vertex[256], size_t k, int channel) { switch (channel & 3) { case 0: return encodeDeltas1(buffer, vertex_data, vertex_count, vertex_size, last_vertex, k, 0); case 1: return encodeDeltas1(buffer, vertex_data, vertex_count, vertex_size, last_vertex, k, 0); case 2: return encodeDeltas1(buffer, vertex_data, vertex_count, vertex_size, last_vertex, k, channel >> 4); default: assert(!"Unsupported channel encoding"); // unreachable } } static int estimateBits(unsigned char v) { return v <= 15 ? (v <= 3 ? (v == 0 ? 0 : 2) : 4) : 8; } static int estimateRotate(const unsigned char* vertex_data, size_t vertex_count, size_t vertex_size, size_t k, size_t group_size) { size_t sizes[8] = {}; const unsigned char* vertex = vertex_data + k; unsigned int last = vertex[0] | (vertex[1] << 8) | (vertex[2] << 16) | (vertex[3] << 24); for (size_t i = 0; i < vertex_count; i += group_size) { unsigned int bitg = 0; // calculate bit consistency mask for the group for (size_t j = 0; j < group_size && i + j < vertex_count; ++j) { unsigned int v = vertex[0] | (vertex[1] << 8) | (vertex[2] << 16) | (vertex[3] << 24); unsigned int d = v ^ last; bitg |= d; last = v; vertex += vertex_size; } #if TRACE for (int j = 0; j < 32; ++j) vertexstats[k + (j / 8)].bitc[j % 8] += (i + group_size < vertex_count ? group_size : vertex_count - i) * (1 - ((bitg >> j) & 1)); #endif for (int j = 0; j < 8; ++j) { unsigned int bitr = rotate(bitg, j); sizes[j] += estimateBits((unsigned char)(bitr >> 0)) + estimateBits((unsigned char)(bitr >> 8)); sizes[j] += estimateBits((unsigned char)(bitr >> 16)) + estimateBits((unsigned char)(bitr >> 24)); } } int best_rot = 0; for (int rot = 1; rot < 8; ++rot) best_rot = (sizes[rot] < sizes[best_rot]) ? rot : best_rot; return best_rot; } static int estimateChannel(const unsigned char* vertex_data, size_t vertex_count, size_t vertex_size, size_t k, size_t vertex_block_size, size_t block_skip, int max_channel, int xor_rot) { unsigned char block[kVertexBlockMaxSize]; assert(vertex_block_size <= kVertexBlockMaxSize); unsigned char last_vertex[256] = {}; size_t sizes[3] = {}; assert(max_channel <= 3); for (size_t i = 0; i < vertex_count; i += vertex_block_size * block_skip) { size_t block_size = i + vertex_block_size < vertex_count ? vertex_block_size : vertex_count - i; size_t block_size_aligned = (block_size + kByteGroupSize - 1) & ~(kByteGroupSize - 1); memcpy(last_vertex, vertex_data + (i == 0 ? 0 : i - 1) * vertex_size, vertex_size); // we sometimes encode elements we didn't fill when rounding to kByteGroupSize if (block_size < block_size_aligned) memset(block + block_size, 0, block_size_aligned - block_size); for (int channel = 0; channel < max_channel; ++channel) for (size_t j = 0; j < 4; ++j) { encodeDeltas(block, vertex_data + i * vertex_size, block_size, vertex_size, last_vertex, k + j, channel | (xor_rot << 4)); for (size_t ig = 0; ig < block_size; ig += kByteGroupSize) { // to maximize encoding performance we only evaluate 1/2/4/8 bit groups size_t size1 = encodeBytesGroupMeasure(block + ig, 1); size_t size2 = encodeBytesGroupMeasure(block + ig, 2); size_t size4 = encodeBytesGroupMeasure(block + ig, 4); size_t size8 = encodeBytesGroupMeasure(block + ig, 8); size_t best_size = size1 < size2 ? size1 : size2; best_size = best_size < size4 ? best_size : size4; best_size = best_size < size8 ? best_size : size8; sizes[channel] += best_size; } } } int best_channel = 0; for (int channel = 1; channel < max_channel; ++channel) best_channel = (sizes[channel] < sizes[best_channel]) ? channel : best_channel; return best_channel == 2 ? best_channel | (xor_rot << 4) : best_channel; } static bool estimateControlZero(const unsigned char* buffer, size_t vertex_count_aligned) { for (size_t i = 0; i < vertex_count_aligned; i += kByteGroupSize) if (!encodeBytesGroupZero(buffer + i)) return false; return true; } static int estimateControl(const unsigned char* buffer, size_t vertex_count, size_t vertex_count_aligned, int level) { if (estimateControlZero(buffer, vertex_count_aligned)) return 2; // zero encoding if (level == 0) return 1; // 1248 encoding in level 0 for encoding speed // round number of groups to 4 to get number of header bytes size_t header_size = (vertex_count_aligned / kByteGroupSize + 3) / 4; size_t est_bytes0 = header_size, est_bytes1 = header_size; for (size_t i = 0; i < vertex_count_aligned; i += kByteGroupSize) { // assumes kBitsV1[] = {0, 1, 2, 4, 8} for performance size_t size0 = encodeBytesGroupMeasure(buffer + i, 0); size_t size1 = encodeBytesGroupMeasure(buffer + i, 1); size_t size2 = encodeBytesGroupMeasure(buffer + i, 2); size_t size4 = encodeBytesGroupMeasure(buffer + i, 4); size_t size8 = encodeBytesGroupMeasure(buffer + i, 8); // both control modes have access to 1/2/4 bit encoding size_t size12 = size1 < size2 ? size1 : size2; size_t size124 = size12 < size4 ? size12 : size4; // each control mode has access to 0/8 bit encoding respectively est_bytes0 += size124 < size0 ? size124 : size0; est_bytes1 += size124 < size8 ? size124 : size8; } // pick shortest control entry but prefer literal encoding if (est_bytes0 < vertex_count || est_bytes1 < vertex_count) return est_bytes0 < est_bytes1 ? 0 : 1; else return 3; // literal encoding } static unsigned char* encodeVertexBlock(unsigned char* data, unsigned char* data_end, const unsigned char* vertex_data, size_t vertex_count, size_t vertex_size, unsigned char last_vertex[256], const unsigned char* channels, int version, int level) { assert(vertex_count > 0 && vertex_count <= kVertexBlockMaxSize); assert(vertex_size % 4 == 0); unsigned char buffer[kVertexBlockMaxSize]; assert(sizeof(buffer) % kByteGroupSize == 0); size_t vertex_count_aligned = (vertex_count + kByteGroupSize - 1) & ~(kByteGroupSize - 1); // we sometimes encode elements we didn't fill when rounding to kByteGroupSize memset(buffer, 0, sizeof(buffer)); size_t control_size = version == 0 ? 0 : vertex_size / 4; if (size_t(data_end - data) < control_size) return NULL; unsigned char* control = data; data += control_size; memset(control, 0, control_size); for (size_t k = 0; k < vertex_size; ++k) { encodeDeltas(buffer, vertex_data, vertex_count, vertex_size, last_vertex, k, version == 0 ? 0 : channels[k / 4]); #if TRACE const unsigned char* olddata = data; bytestats = &vertexstats[k]; #endif int ctrl = 0; if (version != 0) { ctrl = estimateControl(buffer, vertex_count, vertex_count_aligned, level); assert(unsigned(ctrl) < 4); control[k / 4] |= ctrl << ((k % 4) * 2); #if TRACE vertexstats[k].ctrl[ctrl]++; #endif } if (ctrl == 3) { // literal encoding if (size_t(data_end - data) < vertex_count) return NULL; memcpy(data, buffer, vertex_count); data += vertex_count; } else if (ctrl != 2) // non-zero encoding { data = encodeBytes(data, data_end, buffer, vertex_count_aligned, version == 0 ? kBitsV0 : kBitsV1 + ctrl); if (!data) return NULL; } #if TRACE bytestats = NULL; vertexstats[k].size += data - olddata; #endif } memcpy(last_vertex, &vertex_data[vertex_size * (vertex_count - 1)], vertex_size); return data; } #if defined(SIMD_FALLBACK) || (!defined(SIMD_SSE) && !defined(SIMD_NEON) && !defined(SIMD_AVX) && !defined(SIMD_WASM)) static const unsigned char* decodeBytesGroup(const unsigned char* data, unsigned char* buffer, int bits) { #define READ() byte = *data++ #define NEXT(bits) enc = byte >> (8 - bits), byte <<= bits, encv = *data_var, *buffer++ = (enc == (1 << bits) - 1) ? encv : enc, data_var += (enc == (1 << bits) - 1) unsigned char byte, enc, encv; const unsigned char* data_var; switch (bits) { case 0: memset(buffer, 0, kByteGroupSize); return data; case 1: data_var = data + 2; // 2 groups with 8 1-bit values in each byte (reversed from the order in other groups) READ(); byte = (unsigned char)(((byte * 0x80200802ull) & 0x0884422110ull) * 0x0101010101ull >> 32); NEXT(1), NEXT(1), NEXT(1), NEXT(1), NEXT(1), NEXT(1), NEXT(1), NEXT(1); READ(); byte = (unsigned char)(((byte * 0x80200802ull) & 0x0884422110ull) * 0x0101010101ull >> 32); NEXT(1), NEXT(1), NEXT(1), NEXT(1), NEXT(1), NEXT(1), NEXT(1), NEXT(1); return data_var; case 2: data_var = data + 4; // 4 groups with 4 2-bit values in each byte READ(), NEXT(2), NEXT(2), NEXT(2), NEXT(2); READ(), NEXT(2), NEXT(2), NEXT(2), NEXT(2); READ(), NEXT(2), NEXT(2), NEXT(2), NEXT(2); READ(), NEXT(2), NEXT(2), NEXT(2), NEXT(2); return data_var; case 4: data_var = data + 8; // 8 groups with 2 4-bit values in each byte READ(), NEXT(4), NEXT(4); READ(), NEXT(4), NEXT(4); READ(), NEXT(4), NEXT(4); READ(), NEXT(4), NEXT(4); READ(), NEXT(4), NEXT(4); READ(), NEXT(4), NEXT(4); READ(), NEXT(4), NEXT(4); READ(), NEXT(4), NEXT(4); return data_var; case 8: memcpy(buffer, data, kByteGroupSize); return data + kByteGroupSize; default: assert(!"Unexpected bit length"); // unreachable return data; } #undef READ #undef NEXT } static const unsigned char* decodeBytes(const unsigned char* data, const unsigned char* data_end, unsigned char* buffer, size_t buffer_size, const int* bits) { assert(buffer_size % kByteGroupSize == 0); // round number of groups to 4 to get number of header bytes size_t header_size = (buffer_size / kByteGroupSize + 3) / 4; if (size_t(data_end - data) < header_size) return NULL; const unsigned char* header = data; data += header_size; for (size_t i = 0; i < buffer_size; i += kByteGroupSize) { if (size_t(data_end - data) < kByteGroupDecodeLimit) return NULL; size_t header_offset = i / kByteGroupSize; int bitsk = (header[header_offset / 4] >> ((header_offset % 4) * 2)) & 3; data = decodeBytesGroup(data, buffer + i, bits[bitsk]); } return data; } template static void decodeDeltas1(const unsigned char* buffer, unsigned char* transposed, size_t vertex_count, size_t vertex_size, const unsigned char* last_vertex, int rot) { for (size_t k = 0; k < 4; k += sizeof(T)) { size_t vertex_offset = k; T p = last_vertex[0]; for (size_t j = 1; j < sizeof(T); ++j) p |= last_vertex[j] << (8 * j); for (size_t i = 0; i < vertex_count; ++i) { T v = buffer[i]; for (size_t j = 1; j < sizeof(T); ++j) v |= buffer[i + vertex_count * j] << (8 * j); v = Xor ? T(rotate(v, rot)) ^ p : unzigzag(v) + p; for (size_t j = 0; j < sizeof(T); ++j) transposed[vertex_offset + j] = (unsigned char)(v >> (j * 8)); p = v; vertex_offset += vertex_size; } buffer += vertex_count * sizeof(T); last_vertex += sizeof(T); } } static const unsigned char* decodeVertexBlock(const unsigned char* data, const unsigned char* data_end, unsigned char* vertex_data, size_t vertex_count, size_t vertex_size, unsigned char last_vertex[256], const unsigned char* channels, int version) { assert(vertex_count > 0 && vertex_count <= kVertexBlockMaxSize); unsigned char buffer[kVertexBlockMaxSize * 4]; unsigned char transposed[kVertexBlockSizeBytes]; size_t vertex_count_aligned = (vertex_count + kByteGroupSize - 1) & ~(kByteGroupSize - 1); assert(vertex_count <= vertex_count_aligned); size_t control_size = version == 0 ? 0 : vertex_size / 4; if (size_t(data_end - data) < control_size) return NULL; const unsigned char* control = data; data += control_size; for (size_t k = 0; k < vertex_size; k += 4) { unsigned char ctrl_byte = version == 0 ? 0 : control[k / 4]; for (size_t j = 0; j < 4; ++j) { int ctrl = (ctrl_byte >> (j * 2)) & 3; if (ctrl == 3) { // literal encoding if (size_t(data_end - data) < vertex_count) return NULL; memcpy(buffer + j * vertex_count, data, vertex_count); data += vertex_count; } else if (ctrl == 2) { // zero encoding memset(buffer + j * vertex_count, 0, vertex_count); } else { data = decodeBytes(data, data_end, buffer + j * vertex_count, vertex_count_aligned, version == 0 ? kBitsV0 : kBitsV1 + ctrl); if (!data) return NULL; } } int channel = version == 0 ? 0 : channels[k / 4]; switch (channel & 3) { case 0: decodeDeltas1(buffer, transposed + k, vertex_count, vertex_size, last_vertex + k, 0); break; case 1: decodeDeltas1(buffer, transposed + k, vertex_count, vertex_size, last_vertex + k, 0); break; case 2: decodeDeltas1(buffer, transposed + k, vertex_count, vertex_size, last_vertex + k, (32 - (channel >> 4)) & 31); break; default: return NULL; // invalid channel type } } memcpy(vertex_data, transposed, vertex_count * vertex_size); memcpy(last_vertex, &transposed[vertex_size * (vertex_count - 1)], vertex_size); return data; } #endif #if defined(SIMD_SSE) || defined(SIMD_NEON) || defined(SIMD_WASM) static unsigned char kDecodeBytesGroupShuffle[256][8]; static unsigned char kDecodeBytesGroupCount[256]; #ifdef __wasm__ __attribute__((cold)) // this saves 500 bytes in the output binary - we don't need to vectorize this loop! #endif static bool decodeBytesGroupBuildTables() { for (int mask = 0; mask < 256; ++mask) { unsigned char shuffle[8]; unsigned char count = 0; for (int i = 0; i < 8; ++i) { int maski = (mask >> i) & 1; shuffle[i] = maski ? count : 0x80; count += (unsigned char)(maski); } memcpy(kDecodeBytesGroupShuffle[mask], shuffle, 8); kDecodeBytesGroupCount[mask] = count; } return true; } static bool gDecodeBytesGroupInitialized = decodeBytesGroupBuildTables(); #endif #ifdef SIMD_SSE SIMD_TARGET inline __m128i decodeShuffleMask(unsigned char mask0, unsigned char mask1) { __m128i sm0 = _mm_loadl_epi64(reinterpret_cast(&kDecodeBytesGroupShuffle[mask0])); __m128i sm1 = _mm_loadl_epi64(reinterpret_cast(&kDecodeBytesGroupShuffle[mask1])); __m128i sm1off = _mm_set1_epi8(kDecodeBytesGroupCount[mask0]); __m128i sm1r = _mm_add_epi8(sm1, sm1off); return _mm_unpacklo_epi64(sm0, sm1r); } SIMD_TARGET inline const unsigned char* decodeBytesGroupSimd(const unsigned char* data, unsigned char* buffer, int hbits) { switch (hbits) { case 0: case 4: { __m128i result = _mm_setzero_si128(); _mm_storeu_si128(reinterpret_cast<__m128i*>(buffer), result); return data; } case 1: case 6: { #ifdef __GNUC__ typedef int __attribute__((aligned(1))) unaligned_int; #else typedef int unaligned_int; #endif #ifdef SIMD_LATENCYOPT unsigned int data32; memcpy(&data32, data, 4); data32 &= data32 >> 1; // arrange bits such that low bits of nibbles of data64 contain all 2-bit elements of data32 unsigned long long data64 = ((unsigned long long)data32 << 30) | (data32 & 0x3fffffff); // adds all 1-bit nibbles together; the sum fits in 4 bits because datacnt=16 would have used mode 3 int datacnt = int(((data64 & 0x1111111111111111ull) * 0x1111111111111111ull) >> 60); #endif __m128i sel2 = _mm_cvtsi32_si128(*reinterpret_cast(data)); __m128i rest = _mm_loadu_si128(reinterpret_cast(data + 4)); __m128i sel22 = _mm_unpacklo_epi8(_mm_srli_epi16(sel2, 4), sel2); __m128i sel2222 = _mm_unpacklo_epi8(_mm_srli_epi16(sel22, 2), sel22); __m128i sel = _mm_and_si128(sel2222, _mm_set1_epi8(3)); __m128i mask = _mm_cmpeq_epi8(sel, _mm_set1_epi8(3)); int mask16 = _mm_movemask_epi8(mask); unsigned char mask0 = (unsigned char)(mask16 & 255); unsigned char mask1 = (unsigned char)(mask16 >> 8); __m128i shuf = decodeShuffleMask(mask0, mask1); __m128i result = _mm_or_si128(_mm_shuffle_epi8(rest, shuf), _mm_andnot_si128(mask, sel)); _mm_storeu_si128(reinterpret_cast<__m128i*>(buffer), result); #ifdef SIMD_LATENCYOPT return data + 4 + datacnt; #else return data + 4 + kDecodeBytesGroupCount[mask0] + kDecodeBytesGroupCount[mask1]; #endif } case 2: case 7: { #ifdef SIMD_LATENCYOPT unsigned long long data64; memcpy(&data64, data, 8); data64 &= data64 >> 1; data64 &= data64 >> 2; // adds all 1-bit nibbles together; the sum fits in 4 bits because datacnt=16 would have used mode 3 int datacnt = int(((data64 & 0x1111111111111111ull) * 0x1111111111111111ull) >> 60); #endif __m128i sel4 = _mm_loadl_epi64(reinterpret_cast(data)); __m128i rest = _mm_loadu_si128(reinterpret_cast(data + 8)); __m128i sel44 = _mm_unpacklo_epi8(_mm_srli_epi16(sel4, 4), sel4); __m128i sel = _mm_and_si128(sel44, _mm_set1_epi8(15)); __m128i mask = _mm_cmpeq_epi8(sel, _mm_set1_epi8(15)); int mask16 = _mm_movemask_epi8(mask); unsigned char mask0 = (unsigned char)(mask16 & 255); unsigned char mask1 = (unsigned char)(mask16 >> 8); __m128i shuf = decodeShuffleMask(mask0, mask1); __m128i result = _mm_or_si128(_mm_shuffle_epi8(rest, shuf), _mm_andnot_si128(mask, sel)); _mm_storeu_si128(reinterpret_cast<__m128i*>(buffer), result); #ifdef SIMD_LATENCYOPT return data + 8 + datacnt; #else return data + 8 + kDecodeBytesGroupCount[mask0] + kDecodeBytesGroupCount[mask1]; #endif } case 3: case 8: { __m128i result = _mm_loadu_si128(reinterpret_cast(data)); _mm_storeu_si128(reinterpret_cast<__m128i*>(buffer), result); return data + 16; } case 5: { __m128i rest = _mm_loadu_si128(reinterpret_cast(data + 2)); unsigned char mask0 = data[0]; unsigned char mask1 = data[1]; __m128i shuf = decodeShuffleMask(mask0, mask1); __m128i result = _mm_shuffle_epi8(rest, shuf); _mm_storeu_si128(reinterpret_cast<__m128i*>(buffer), result); return data + 2 + kDecodeBytesGroupCount[mask0] + kDecodeBytesGroupCount[mask1]; } default: SIMD_UNREACHABLE(); // unreachable } } #endif #ifdef SIMD_AVX static const __m128i kDecodeBytesGroupConfig[8][2] = { {_mm_setzero_si128(), _mm_setzero_si128()}, {_mm_set1_epi8(3), _mm_setr_epi8(6, 4, 2, 0, 14, 12, 10, 8, 22, 20, 18, 16, 30, 28, 26, 24)}, {_mm_set1_epi8(15), _mm_setr_epi8(4, 0, 12, 8, 20, 16, 28, 24, 36, 32, 44, 40, 52, 48, 60, 56)}, {_mm_setzero_si128(), _mm_setzero_si128()}, {_mm_setzero_si128(), _mm_setzero_si128()}, {_mm_set1_epi8(1), _mm_setr_epi8(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)}, {_mm_set1_epi8(3), _mm_setr_epi8(6, 4, 2, 0, 14, 12, 10, 8, 22, 20, 18, 16, 30, 28, 26, 24)}, {_mm_set1_epi8(15), _mm_setr_epi8(4, 0, 12, 8, 20, 16, 28, 24, 36, 32, 44, 40, 52, 48, 60, 56)}, }; SIMD_TARGET inline const unsigned char* decodeBytesGroupSimd(const unsigned char* data, unsigned char* buffer, int hbits) { switch (hbits) { case 0: case 4: { __m128i result = _mm_setzero_si128(); _mm_storeu_si128(reinterpret_cast<__m128i*>(buffer), result); return data; } case 5: // 1-bit case 1: // 2-bit case 6: case 2: // 4-bit case 7: { const unsigned char* skip = data + (2 << (hbits < 3 ? hbits : hbits - 5)); __m128i selb = _mm_loadl_epi64(reinterpret_cast(data)); __m128i rest = _mm_loadu_si128(reinterpret_cast(skip)); __m128i sent = kDecodeBytesGroupConfig[hbits][0]; __m128i ctrl = kDecodeBytesGroupConfig[hbits][1]; __m128i selw = _mm_shuffle_epi32(selb, 0x44); __m128i sel = _mm_and_si128(sent, _mm_multishift_epi64_epi8(ctrl, selw)); __mmask16 mask16 = _mm_cmp_epi8_mask(sel, sent, _MM_CMPINT_EQ); __m128i result = _mm_mask_expand_epi8(sel, mask16, rest); _mm_storeu_si128(reinterpret_cast<__m128i*>(buffer), result); return skip + _mm_popcnt_u32(mask16); } case 3: case 8: { __m128i result = _mm_loadu_si128(reinterpret_cast(data)); _mm_storeu_si128(reinterpret_cast<__m128i*>(buffer), result); return data + 16; } default: SIMD_UNREACHABLE(); // unreachable } } #endif #ifdef SIMD_NEON SIMD_TARGET inline uint8x16_t shuffleBytes(unsigned char mask0, unsigned char mask1, uint8x8_t rest0, uint8x8_t rest1) { uint8x8_t sm0 = vld1_u8(kDecodeBytesGroupShuffle[mask0]); uint8x8_t sm1 = vld1_u8(kDecodeBytesGroupShuffle[mask1]); uint8x8_t r0 = vtbl1_u8(rest0, sm0); uint8x8_t r1 = vtbl1_u8(rest1, sm1); return vcombine_u8(r0, r1); } SIMD_TARGET inline void neonMoveMask(uint8x16_t mask, unsigned char& mask0, unsigned char& mask1) { // magic constant found using z3 SMT assuming mask has 8 groups of 0xff or 0x00 const uint64_t magic = 0x000103070f1f3f80ull; uint64x2_t mask2 = vreinterpretq_u64_u8(mask); mask0 = uint8_t((vgetq_lane_u64(mask2, 0) * magic) >> 56); mask1 = uint8_t((vgetq_lane_u64(mask2, 1) * magic) >> 56); } SIMD_TARGET inline const unsigned char* decodeBytesGroupSimd(const unsigned char* data, unsigned char* buffer, int hbits) { switch (hbits) { case 0: case 4: { uint8x16_t result = vdupq_n_u8(0); vst1q_u8(buffer, result); return data; } case 1: case 6: { #ifdef SIMD_LATENCYOPT unsigned int data32; memcpy(&data32, data, 4); data32 &= data32 >> 1; // arrange bits such that low bits of nibbles of data64 contain all 2-bit elements of data32 unsigned long long data64 = ((unsigned long long)data32 << 30) | (data32 & 0x3fffffff); // adds all 1-bit nibbles together; the sum fits in 4 bits because datacnt=16 would have used mode 3 int datacnt = int(((data64 & 0x1111111111111111ull) * 0x1111111111111111ull) >> 60); #endif uint8x8_t sel2 = vld1_u8(data); uint8x8_t sel22 = vzip_u8(vshr_n_u8(sel2, 4), sel2).val[0]; uint8x8x2_t sel2222 = vzip_u8(vshr_n_u8(sel22, 2), sel22); uint8x16_t sel = vandq_u8(vcombine_u8(sel2222.val[0], sel2222.val[1]), vdupq_n_u8(3)); uint8x16_t mask = vceqq_u8(sel, vdupq_n_u8(3)); unsigned char mask0, mask1; neonMoveMask(mask, mask0, mask1); uint8x8_t rest0 = vld1_u8(data + 4); uint8x8_t rest1 = vld1_u8(data + 4 + kDecodeBytesGroupCount[mask0]); uint8x16_t result = vbslq_u8(mask, shuffleBytes(mask0, mask1, rest0, rest1), sel); vst1q_u8(buffer, result); #ifdef SIMD_LATENCYOPT return data + 4 + datacnt; #else return data + 4 + kDecodeBytesGroupCount[mask0] + kDecodeBytesGroupCount[mask1]; #endif } case 2: case 7: { #ifdef SIMD_LATENCYOPT unsigned long long data64; memcpy(&data64, data, 8); data64 &= data64 >> 1; data64 &= data64 >> 2; // adds all 1-bit nibbles together; the sum fits in 4 bits because datacnt=16 would have used mode 3 int datacnt = int(((data64 & 0x1111111111111111ull) * 0x1111111111111111ull) >> 60); #endif uint8x8_t sel4 = vld1_u8(data); uint8x8x2_t sel44 = vzip_u8(vshr_n_u8(sel4, 4), vand_u8(sel4, vdup_n_u8(15))); uint8x16_t sel = vcombine_u8(sel44.val[0], sel44.val[1]); uint8x16_t mask = vceqq_u8(sel, vdupq_n_u8(15)); unsigned char mask0, mask1; neonMoveMask(mask, mask0, mask1); uint8x8_t rest0 = vld1_u8(data + 8); uint8x8_t rest1 = vld1_u8(data + 8 + kDecodeBytesGroupCount[mask0]); uint8x16_t result = vbslq_u8(mask, shuffleBytes(mask0, mask1, rest0, rest1), sel); vst1q_u8(buffer, result); #ifdef SIMD_LATENCYOPT return data + 8 + datacnt; #else return data + 8 + kDecodeBytesGroupCount[mask0] + kDecodeBytesGroupCount[mask1]; #endif } case 3: case 8: { uint8x16_t result = vld1q_u8(data); vst1q_u8(buffer, result); return data + 16; } case 5: { unsigned char mask0 = data[0]; unsigned char mask1 = data[1]; uint8x8_t rest0 = vld1_u8(data + 2); uint8x8_t rest1 = vld1_u8(data + 2 + kDecodeBytesGroupCount[mask0]); uint8x16_t result = shuffleBytes(mask0, mask1, rest0, rest1); vst1q_u8(buffer, result); return data + 2 + kDecodeBytesGroupCount[mask0] + kDecodeBytesGroupCount[mask1]; } default: SIMD_UNREACHABLE(); // unreachable } } #endif #ifdef SIMD_WASM SIMD_TARGET inline v128_t decodeShuffleMask(unsigned char mask0, unsigned char mask1) { v128_t sm0 = wasm_v128_load(&kDecodeBytesGroupShuffle[mask0]); v128_t sm1 = wasm_v128_load(&kDecodeBytesGroupShuffle[mask1]); v128_t sm1off = wasm_v128_load8_splat(&kDecodeBytesGroupCount[mask0]); v128_t sm1r = wasm_i8x16_add(sm1, sm1off); return wasmx_unpacklo_v64x2(sm0, sm1r); } SIMD_TARGET inline void wasmMoveMask(v128_t mask, unsigned char& mask0, unsigned char& mask1) { // magic constant found using z3 SMT assuming mask has 8 groups of 0xff or 0x00 const uint64_t magic = 0x000103070f1f3f80ull; mask0 = uint8_t((wasm_i64x2_extract_lane(mask, 0) * magic) >> 56); mask1 = uint8_t((wasm_i64x2_extract_lane(mask, 1) * magic) >> 56); } SIMD_TARGET inline const unsigned char* decodeBytesGroupSimd(const unsigned char* data, unsigned char* buffer, int hbits) { switch (hbits) { case 0: case 4: { v128_t result = wasm_i8x16_splat(0); wasm_v128_store(buffer, result); return data; } case 1: case 6: { v128_t sel2 = wasm_v128_load(data); v128_t rest = wasm_v128_load(data + 4); v128_t sel22 = wasmx_unpacklo_v8x16(wasm_i16x8_shr(sel2, 4), sel2); v128_t sel2222 = wasmx_unpacklo_v8x16(wasm_i16x8_shr(sel22, 2), sel22); v128_t sel = wasm_v128_and(sel2222, wasm_i8x16_splat(3)); v128_t mask = wasm_i8x16_eq(sel, wasm_i8x16_splat(3)); unsigned char mask0, mask1; wasmMoveMask(mask, mask0, mask1); v128_t shuf = decodeShuffleMask(mask0, mask1); v128_t result = wasm_v128_bitselect(wasm_i8x16_swizzle(rest, shuf), sel, mask); wasm_v128_store(buffer, result); return data + 4 + kDecodeBytesGroupCount[mask0] + kDecodeBytesGroupCount[mask1]; } case 2: case 7: { v128_t sel4 = wasm_v128_load(data); v128_t rest = wasm_v128_load(data + 8); v128_t sel44 = wasmx_unpacklo_v8x16(wasm_i16x8_shr(sel4, 4), sel4); v128_t sel = wasm_v128_and(sel44, wasm_i8x16_splat(15)); v128_t mask = wasm_i8x16_eq(sel, wasm_i8x16_splat(15)); unsigned char mask0, mask1; wasmMoveMask(mask, mask0, mask1); v128_t shuf = decodeShuffleMask(mask0, mask1); v128_t result = wasm_v128_bitselect(wasm_i8x16_swizzle(rest, shuf), sel, mask); wasm_v128_store(buffer, result); return data + 8 + kDecodeBytesGroupCount[mask0] + kDecodeBytesGroupCount[mask1]; } case 3: case 8: { v128_t result = wasm_v128_load(data); wasm_v128_store(buffer, result); return data + 16; } case 5: { v128_t rest = wasm_v128_load(data + 2); unsigned char mask0 = data[0]; unsigned char mask1 = data[1]; v128_t shuf = decodeShuffleMask(mask0, mask1); v128_t result = wasm_i8x16_swizzle(rest, shuf); wasm_v128_store(buffer, result); return data + 2 + kDecodeBytesGroupCount[mask0] + kDecodeBytesGroupCount[mask1]; } default: SIMD_UNREACHABLE(); // unreachable } } #endif #if defined(SIMD_SSE) || defined(SIMD_AVX) SIMD_TARGET inline void transpose8(__m128i& x0, __m128i& x1, __m128i& x2, __m128i& x3) { __m128i t0 = _mm_unpacklo_epi8(x0, x1); __m128i t1 = _mm_unpackhi_epi8(x0, x1); __m128i t2 = _mm_unpacklo_epi8(x2, x3); __m128i t3 = _mm_unpackhi_epi8(x2, x3); x0 = _mm_unpacklo_epi16(t0, t2); x1 = _mm_unpackhi_epi16(t0, t2); x2 = _mm_unpacklo_epi16(t1, t3); x3 = _mm_unpackhi_epi16(t1, t3); } SIMD_TARGET inline __m128i unzigzag8(__m128i v) { __m128i xl = _mm_sub_epi8(_mm_setzero_si128(), _mm_and_si128(v, _mm_set1_epi8(1))); __m128i xr = _mm_and_si128(_mm_srli_epi16(v, 1), _mm_set1_epi8(127)); return _mm_xor_si128(xl, xr); } SIMD_TARGET inline __m128i unzigzag16(__m128i v) { __m128i xl = _mm_sub_epi16(_mm_setzero_si128(), _mm_and_si128(v, _mm_set1_epi16(1))); __m128i xr = _mm_srli_epi16(v, 1); return _mm_xor_si128(xl, xr); } SIMD_TARGET inline __m128i rotate32(__m128i v, int r) { return _mm_or_si128(_mm_slli_epi32(v, r), _mm_srli_epi32(v, 32 - r)); } #endif #ifdef SIMD_NEON SIMD_TARGET inline void transpose8(uint8x16_t& x0, uint8x16_t& x1, uint8x16_t& x2, uint8x16_t& x3) { uint8x16x2_t t01 = vzipq_u8(x0, x1); uint8x16x2_t t23 = vzipq_u8(x2, x3); uint16x8x2_t x01 = vzipq_u16(vreinterpretq_u16_u8(t01.val[0]), vreinterpretq_u16_u8(t23.val[0])); uint16x8x2_t x23 = vzipq_u16(vreinterpretq_u16_u8(t01.val[1]), vreinterpretq_u16_u8(t23.val[1])); x0 = vreinterpretq_u8_u16(x01.val[0]); x1 = vreinterpretq_u8_u16(x01.val[1]); x2 = vreinterpretq_u8_u16(x23.val[0]); x3 = vreinterpretq_u8_u16(x23.val[1]); } SIMD_TARGET inline uint8x16_t unzigzag8(uint8x16_t v) { uint8x16_t xl = vreinterpretq_u8_s8(vnegq_s8(vreinterpretq_s8_u8(vandq_u8(v, vdupq_n_u8(1))))); uint8x16_t xr = vshrq_n_u8(v, 1); return veorq_u8(xl, xr); } SIMD_TARGET inline uint8x16_t unzigzag16(uint8x16_t v) { uint16x8_t vv = vreinterpretq_u16_u8(v); uint8x16_t xl = vreinterpretq_u8_s16(vnegq_s16(vreinterpretq_s16_u16(vandq_u16(vv, vdupq_n_u16(1))))); uint8x16_t xr = vreinterpretq_u8_u16(vshrq_n_u16(vv, 1)); return veorq_u8(xl, xr); } SIMD_TARGET inline uint8x16_t rotate32(uint8x16_t v, int r) { uint32x4_t v32 = vreinterpretq_u32_u8(v); return vreinterpretq_u8_u32(vorrq_u32(vshlq_u32(v32, vdupq_n_s32(r)), vshlq_u32(v32, vdupq_n_s32(r - 32)))); } template SIMD_TARGET inline uint8x8_t rebase(uint8x8_t npi, uint8x16_t r0, uint8x16_t r1, uint8x16_t r2, uint8x16_t r3) { switch (Channel) { case 0: { uint8x16_t rsum = vaddq_u8(vaddq_u8(r0, r1), vaddq_u8(r2, r3)); uint8x8_t rsumx = vadd_u8(vget_low_u8(rsum), vget_high_u8(rsum)); return vadd_u8(vadd_u8(npi, rsumx), vext_u8(rsumx, rsumx, 4)); } case 1: { uint16x8_t rsum = vaddq_u16(vaddq_u16(vreinterpretq_u16_u8(r0), vreinterpretq_u16_u8(r1)), vaddq_u16(vreinterpretq_u16_u8(r2), vreinterpretq_u16_u8(r3))); uint16x4_t rsumx = vadd_u16(vget_low_u16(rsum), vget_high_u16(rsum)); return vreinterpret_u8_u16(vadd_u16(vadd_u16(vreinterpret_u16_u8(npi), rsumx), vext_u16(rsumx, rsumx, 2))); } case 2: { uint8x16_t rsum = veorq_u8(veorq_u8(r0, r1), veorq_u8(r2, r3)); uint8x8_t rsumx = veor_u8(vget_low_u8(rsum), vget_high_u8(rsum)); return veor_u8(veor_u8(npi, rsumx), vext_u8(rsumx, rsumx, 4)); } default: return npi; } } #endif #ifdef SIMD_WASM SIMD_TARGET inline void transpose8(v128_t& x0, v128_t& x1, v128_t& x2, v128_t& x3) { v128_t t0 = wasmx_unpacklo_v8x16(x0, x1); v128_t t1 = wasmx_unpackhi_v8x16(x0, x1); v128_t t2 = wasmx_unpacklo_v8x16(x2, x3); v128_t t3 = wasmx_unpackhi_v8x16(x2, x3); x0 = wasmx_unpacklo_v16x8(t0, t2); x1 = wasmx_unpackhi_v16x8(t0, t2); x2 = wasmx_unpacklo_v16x8(t1, t3); x3 = wasmx_unpackhi_v16x8(t1, t3); } SIMD_TARGET inline v128_t unzigzag8(v128_t v) { v128_t xl = wasm_i8x16_neg(wasm_v128_and(v, wasm_i8x16_splat(1))); v128_t xr = wasm_u8x16_shr(v, 1); return wasm_v128_xor(xl, xr); } SIMD_TARGET inline v128_t unzigzag16(v128_t v) { v128_t xl = wasm_i16x8_neg(wasm_v128_and(v, wasm_i16x8_splat(1))); v128_t xr = wasm_u16x8_shr(v, 1); return wasm_v128_xor(xl, xr); } SIMD_TARGET inline v128_t rotate32(v128_t v, int r) { return wasm_v128_or(wasm_i32x4_shl(v, r), wasm_i32x4_shr(v, 32 - r)); } #endif #if defined(SIMD_SSE) || defined(SIMD_AVX) || defined(SIMD_NEON) || defined(SIMD_WASM) SIMD_TARGET static const unsigned char* decodeBytesSimd(const unsigned char* data, const unsigned char* data_end, unsigned char* buffer, size_t buffer_size, int hshift) { assert(buffer_size % kByteGroupSize == 0); assert(kByteGroupSize == 16); // round number of groups to 4 to get number of header bytes size_t header_size = (buffer_size / kByteGroupSize + 3) / 4; if (size_t(data_end - data) < header_size) return NULL; const unsigned char* header = data; data += header_size; size_t i = 0; // fast-path: process 4 groups at a time, do a shared bounds check for (; i + kByteGroupSize * 4 <= buffer_size && size_t(data_end - data) >= kByteGroupDecodeLimit * 4; i += kByteGroupSize * 4) { size_t header_offset = i / kByteGroupSize; unsigned char header_byte = header[header_offset / 4]; data = decodeBytesGroupSimd(data, buffer + i + kByteGroupSize * 0, hshift + ((header_byte >> 0) & 3)); data = decodeBytesGroupSimd(data, buffer + i + kByteGroupSize * 1, hshift + ((header_byte >> 2) & 3)); data = decodeBytesGroupSimd(data, buffer + i + kByteGroupSize * 2, hshift + ((header_byte >> 4) & 3)); data = decodeBytesGroupSimd(data, buffer + i + kByteGroupSize * 3, hshift + ((header_byte >> 6) & 3)); } // slow-path: process remaining groups for (; i < buffer_size; i += kByteGroupSize) { if (size_t(data_end - data) < kByteGroupDecodeLimit) return NULL; size_t header_offset = i / kByteGroupSize; unsigned char header_byte = header[header_offset / 4]; data = decodeBytesGroupSimd(data, buffer + i, hshift + ((header_byte >> ((header_offset % 4) * 2)) & 3)); } return data; } template SIMD_TARGET static void decodeDeltas4Simd(const unsigned char* buffer, unsigned char* transposed, size_t vertex_count_aligned, size_t vertex_size, unsigned char last_vertex[4], int rot) { #if defined(SIMD_SSE) || defined(SIMD_AVX) #define TEMP __m128i #define PREP() __m128i pi = _mm_cvtsi32_si128(*reinterpret_cast(last_vertex)) #define LOAD(i) __m128i r##i = _mm_loadu_si128(reinterpret_cast(buffer + j + i * vertex_count_aligned)) #define GRP4(i) t0 = r##i, t1 = _mm_shuffle_epi32(r##i, 1), t2 = _mm_shuffle_epi32(r##i, 2), t3 = _mm_shuffle_epi32(r##i, 3) #define FIXD(i) t##i = pi = Channel == 0 ? _mm_add_epi8(pi, t##i) : (Channel == 1 ? _mm_add_epi16(pi, t##i) : _mm_xor_si128(pi, t##i)) #define SAVE(i) *reinterpret_cast(savep) = _mm_cvtsi128_si32(t##i), savep += vertex_size #endif #ifdef SIMD_NEON #define TEMP uint8x8_t #define PREP() uint8x8_t pi = vreinterpret_u8_u32(vld1_lane_u32(reinterpret_cast(last_vertex), vdup_n_u32(0), 0)) #define LOAD(i) uint8x16_t r##i = vld1q_u8(buffer + j + i * vertex_count_aligned) #define GRP4(i) t0 = vget_low_u8(r##i), t1 = vreinterpret_u8_u32(vdup_lane_u32(vreinterpret_u32_u8(t0), 1)), t2 = vget_high_u8(r##i), t3 = vreinterpret_u8_u32(vdup_lane_u32(vreinterpret_u32_u8(t2), 1)) #define FIXD(i) t##i = pi = Channel == 0 ? vadd_u8(pi, t##i) : (Channel == 1 ? vreinterpret_u8_u16(vadd_u16(vreinterpret_u16_u8(pi), vreinterpret_u16_u8(t##i))) : veor_u8(pi, t##i)) #define SAVE(i) vst1_lane_u32(reinterpret_cast(savep), vreinterpret_u32_u8(t##i), 0), savep += vertex_size #endif #ifdef SIMD_WASM #define TEMP v128_t #define PREP() v128_t pi = wasm_v128_load(last_vertex) #define LOAD(i) v128_t r##i = wasm_v128_load(buffer + j + i * vertex_count_aligned) #define GRP4(i) t0 = r##i, t1 = wasmx_splat_v32x4(r##i, 1), t2 = wasmx_splat_v32x4(r##i, 2), t3 = wasmx_splat_v32x4(r##i, 3) #define FIXD(i) t##i = pi = Channel == 0 ? wasm_i8x16_add(pi, t##i) : (Channel == 1 ? wasm_i16x8_add(pi, t##i) : wasm_v128_xor(pi, t##i)) #define SAVE(i) wasm_v128_store32_lane(savep, t##i, 0), savep += vertex_size #endif #define UNZR(i) r##i = Channel == 0 ? unzigzag8(r##i) : (Channel == 1 ? unzigzag16(r##i) : rotate32(r##i, rot)) PREP(); unsigned char* savep = transposed; for (size_t j = 0; j < vertex_count_aligned; j += 16) { LOAD(0); LOAD(1); LOAD(2); LOAD(3); transpose8(r0, r1, r2, r3); TEMP t0, t1, t2, t3; TEMP npi = pi; UNZR(0); GRP4(0); FIXD(0), FIXD(1), FIXD(2), FIXD(3); SAVE(0), SAVE(1), SAVE(2), SAVE(3); UNZR(1); GRP4(1); FIXD(0), FIXD(1), FIXD(2), FIXD(3); SAVE(0), SAVE(1), SAVE(2), SAVE(3); UNZR(2); GRP4(2); FIXD(0), FIXD(1), FIXD(2), FIXD(3); SAVE(0), SAVE(1), SAVE(2), SAVE(3); UNZR(3); GRP4(3); FIXD(0), FIXD(1), FIXD(2), FIXD(3); SAVE(0), SAVE(1), SAVE(2), SAVE(3); #if defined(SIMD_LATENCYOPT) && defined(SIMD_NEON) && (defined(__APPLE__) || defined(_WIN32)) // instead of relying on accumulated pi, recompute it from scratch from r0..r3; this shortens dependency between loop iterations pi = rebase(npi, r0, r1, r2, r3); #else (void)npi; #endif #undef UNZR #undef TEMP #undef PREP #undef LOAD #undef GRP4 #undef FIXD #undef SAVE } } SIMD_TARGET static const unsigned char* decodeVertexBlockSimd(const unsigned char* data, const unsigned char* data_end, unsigned char* vertex_data, size_t vertex_count, size_t vertex_size, unsigned char last_vertex[256], const unsigned char* channels, int version) { assert(vertex_count > 0 && vertex_count <= kVertexBlockMaxSize); unsigned char buffer[kVertexBlockMaxSize * 4]; unsigned char transposed[kVertexBlockSizeBytes]; size_t vertex_count_aligned = (vertex_count + kByteGroupSize - 1) & ~(kByteGroupSize - 1); size_t control_size = version == 0 ? 0 : vertex_size / 4; if (size_t(data_end - data) < control_size) return NULL; const unsigned char* control = data; data += control_size; for (size_t k = 0; k < vertex_size; k += 4) { unsigned char ctrl_byte = version == 0 ? 0 : control[k / 4]; for (size_t j = 0; j < 4; ++j) { int ctrl = (ctrl_byte >> (j * 2)) & 3; if (ctrl == 3) { // literal encoding; safe to over-copy due to tail if (size_t(data_end - data) < vertex_count_aligned) return NULL; memcpy(buffer + j * vertex_count_aligned, data, vertex_count_aligned); data += vertex_count; } else if (ctrl == 2) { // zero encoding memset(buffer + j * vertex_count_aligned, 0, vertex_count_aligned); } else { // for v0, headers are mapped to 0..3; for v1, headers are mapped to 4..8 int hshift = version == 0 ? 0 : 4 + ctrl; data = decodeBytesSimd(data, data_end, buffer + j * vertex_count_aligned, vertex_count_aligned, hshift); if (!data) return NULL; } } int channel = version == 0 ? 0 : channels[k / 4]; switch (channel & 3) { case 0: decodeDeltas4Simd<0>(buffer, transposed + k, vertex_count_aligned, vertex_size, last_vertex + k, 0); break; case 1: decodeDeltas4Simd<1>(buffer, transposed + k, vertex_count_aligned, vertex_size, last_vertex + k, 0); break; case 2: decodeDeltas4Simd<2>(buffer, transposed + k, vertex_count_aligned, vertex_size, last_vertex + k, (32 - (channel >> 4)) & 31); break; default: return NULL; // invalid channel type } } memcpy(vertex_data, transposed, vertex_count * vertex_size); memcpy(last_vertex, &transposed[vertex_size * (vertex_count - 1)], vertex_size); return data; } #endif #if defined(SIMD_SSE) && defined(SIMD_FALLBACK) static unsigned int getCpuFeatures() { int cpuinfo[4] = {}; #ifdef _MSC_VER __cpuid(cpuinfo, 1); #else __cpuid(1, cpuinfo[0], cpuinfo[1], cpuinfo[2], cpuinfo[3]); #endif return cpuinfo[2]; } static unsigned int cpuid = getCpuFeatures(); #endif } // namespace meshopt size_t meshopt_encodeVertexBufferLevel(unsigned char* buffer, size_t buffer_size, const void* vertices, size_t vertex_count, size_t vertex_size, int level, int version) { using namespace meshopt; assert(vertex_size > 0 && vertex_size <= 256); assert(vertex_size % 4 == 0); assert(level >= 0 && level <= 9); // only a subset of this range is used right now assert(version < 0 || unsigned(version) <= kDecodeVertexVersion); version = version < 0 ? gEncodeVertexVersion : version; #if TRACE memset(vertexstats, 0, sizeof(vertexstats)); #endif const unsigned char* vertex_data = static_cast(vertices); unsigned char* data = buffer; unsigned char* data_end = buffer + buffer_size; if (size_t(data_end - data) < 1) return 0; *data++ = (unsigned char)(kVertexHeader | version); unsigned char first_vertex[256] = {}; if (vertex_count > 0) memcpy(first_vertex, vertex_data, vertex_size); unsigned char last_vertex[256] = {}; memcpy(last_vertex, first_vertex, vertex_size); size_t vertex_block_size = getVertexBlockSize(vertex_size); unsigned char channels[64] = {}; if (version != 0 && level > 1 && vertex_count > 1) for (size_t k = 0; k < vertex_size; k += 4) { int rot = level >= 3 ? estimateRotate(vertex_data, vertex_count, vertex_size, k, /* group_size= */ 16) : 0; int channel = estimateChannel(vertex_data, vertex_count, vertex_size, k, vertex_block_size, /* block_skip= */ 3, /* max_channels= */ level >= 3 ? 3 : 2, rot); assert(unsigned(channel) < 2 || ((channel & 3) == 2 && unsigned(channel >> 4) < 8)); channels[k / 4] = (unsigned char)channel; } size_t vertex_offset = 0; while (vertex_offset < vertex_count) { size_t block_size = (vertex_offset + vertex_block_size < vertex_count) ? vertex_block_size : vertex_count - vertex_offset; data = encodeVertexBlock(data, data_end, vertex_data + vertex_offset * vertex_size, block_size, vertex_size, last_vertex, channels, version, level); if (!data) return 0; vertex_offset += block_size; } size_t tail_size = vertex_size + (version == 0 ? 0 : vertex_size / 4); size_t tail_size_min = version == 0 ? kTailMinSizeV0 : kTailMinSizeV1; size_t tail_size_pad = tail_size < tail_size_min ? tail_size_min : tail_size; if (size_t(data_end - data) < tail_size_pad) return 0; if (tail_size < tail_size_pad) { memset(data, 0, tail_size_pad - tail_size); data += tail_size_pad - tail_size; } memcpy(data, first_vertex, vertex_size); data += vertex_size; if (version != 0) { memcpy(data, channels, vertex_size / 4); data += vertex_size / 4; } assert(data >= buffer + tail_size); assert(data <= buffer + buffer_size); #if TRACE size_t total_size = data - buffer; for (size_t k = 0; k < vertex_size; ++k) { const Stats& vsk = vertexstats[k]; printf("%2d: %7d bytes [%4.1f%%] %.1f bpv", int(k), int(vsk.size), double(vsk.size) / double(total_size) * 100, double(vsk.size) / double(vertex_count) * 8); size_t total_k = vsk.header + vsk.bitg[1] + vsk.bitg[2] + vsk.bitg[4] + vsk.bitg[8]; double total_kr = total_k ? 1.0 / double(total_k) : 0; if (version != 0) { int channel = channels[k / 4]; if ((channel & 3) == 2 && k % 4 == 0) printf(" | ^%d", channel >> 4); else printf(" | %2s", channel == 0 ? "1" : (channel == 1 && k % 2 == 0 ? "2" : ".")); } printf(" | hdr [%5.1f%%] bitg [1 %4.1f%% 2 %4.1f%% 4 %4.1f%% 8 %4.1f%%]", double(vsk.header) * total_kr * 100, double(vsk.bitg[1]) * total_kr * 100, double(vsk.bitg[2]) * total_kr * 100, double(vsk.bitg[4]) * total_kr * 100, double(vsk.bitg[8]) * total_kr * 100); size_t total_ctrl = vsk.ctrl[0] + vsk.ctrl[1] + vsk.ctrl[2] + vsk.ctrl[3]; if (total_ctrl) { printf(" | ctrl %3.0f%% %3.0f%% %3.0f%% %3.0f%%", double(vsk.ctrl[0]) / double(total_ctrl) * 100, double(vsk.ctrl[1]) / double(total_ctrl) * 100, double(vsk.ctrl[2]) / double(total_ctrl) * 100, double(vsk.ctrl[3]) / double(total_ctrl) * 100); } if (level >= 3) printf(" | bitc [%3.0f%% %3.0f%% %3.0f%% %3.0f%% %3.0f%% %3.0f%% %3.0f%% %3.0f%%]", double(vsk.bitc[0]) / double(vertex_count) * 100, double(vsk.bitc[1]) / double(vertex_count) * 100, double(vsk.bitc[2]) / double(vertex_count) * 100, double(vsk.bitc[3]) / double(vertex_count) * 100, double(vsk.bitc[4]) / double(vertex_count) * 100, double(vsk.bitc[5]) / double(vertex_count) * 100, double(vsk.bitc[6]) / double(vertex_count) * 100, double(vsk.bitc[7]) / double(vertex_count) * 100); printf("\n"); } #endif return data - buffer; } size_t meshopt_encodeVertexBuffer(unsigned char* buffer, size_t buffer_size, const void* vertices, size_t vertex_count, size_t vertex_size) { return meshopt_encodeVertexBufferLevel(buffer, buffer_size, vertices, vertex_count, vertex_size, meshopt::kEncodeDefaultLevel, meshopt::gEncodeVertexVersion); } size_t meshopt_encodeVertexBufferBound(size_t vertex_count, size_t vertex_size) { using namespace meshopt; assert(vertex_size > 0 && vertex_size <= 256); assert(vertex_size % 4 == 0); size_t vertex_block_size = getVertexBlockSize(vertex_size); size_t vertex_block_count = (vertex_count + vertex_block_size - 1) / vertex_block_size; size_t vertex_block_control_size = vertex_size / 4; size_t vertex_block_header_size = (vertex_block_size / kByteGroupSize + 3) / 4; size_t vertex_block_data_size = vertex_block_size; size_t tail_size = vertex_size + (vertex_size / 4); size_t tail_size_min = kTailMinSizeV0 > kTailMinSizeV1 ? kTailMinSizeV0 : kTailMinSizeV1; size_t tail_size_pad = tail_size < tail_size_min ? tail_size_min : tail_size; assert(tail_size_pad >= kByteGroupDecodeLimit); return 1 + vertex_block_count * vertex_size * (vertex_block_control_size + vertex_block_header_size + vertex_block_data_size) + tail_size_pad; } void meshopt_encodeVertexVersion(int version) { assert(unsigned(version) <= unsigned(meshopt::kDecodeVertexVersion)); meshopt::gEncodeVertexVersion = version; } int meshopt_decodeVertexVersion(const unsigned char* buffer, size_t buffer_size) { if (buffer_size < 1) return -1; unsigned char header = buffer[0]; if ((header & 0xf0) != meshopt::kVertexHeader) return -1; int version = header & 0x0f; if (version > meshopt::kDecodeVertexVersion) return -1; return version; } int meshopt_decodeVertexBuffer(void* destination, size_t vertex_count, size_t vertex_size, const unsigned char* buffer, size_t buffer_size) { using namespace meshopt; assert(vertex_size > 0 && vertex_size <= 256); assert(vertex_size % 4 == 0); const unsigned char* (*decode)(const unsigned char*, const unsigned char*, unsigned char*, size_t, size_t, unsigned char[256], const unsigned char*, int) = NULL; #if defined(SIMD_SSE) && defined(SIMD_FALLBACK) decode = (cpuid & (1 << 9)) ? decodeVertexBlockSimd : decodeVertexBlock; #elif defined(SIMD_SSE) || defined(SIMD_AVX) || defined(SIMD_NEON) || defined(SIMD_WASM) decode = decodeVertexBlockSimd; #else decode = decodeVertexBlock; #endif #if defined(SIMD_SSE) || defined(SIMD_NEON) || defined(SIMD_WASM) assert(gDecodeBytesGroupInitialized); (void)gDecodeBytesGroupInitialized; #endif unsigned char* vertex_data = static_cast(destination); const unsigned char* data = buffer; const unsigned char* data_end = buffer + buffer_size; if (size_t(data_end - data) < 1) return -2; unsigned char data_header = *data++; if ((data_header & 0xf0) != kVertexHeader) return -1; int version = data_header & 0x0f; if (version > kDecodeVertexVersion) return -1; size_t tail_size = vertex_size + (version == 0 ? 0 : vertex_size / 4); size_t tail_size_min = version == 0 ? kTailMinSizeV0 : kTailMinSizeV1; size_t tail_size_pad = tail_size < tail_size_min ? tail_size_min : tail_size; if (size_t(data_end - data) < tail_size_pad) return -2; const unsigned char* tail = data_end - tail_size; unsigned char last_vertex[256]; memcpy(last_vertex, tail, vertex_size); const unsigned char* channels = version == 0 ? NULL : tail + vertex_size; size_t vertex_block_size = getVertexBlockSize(vertex_size); size_t vertex_offset = 0; while (vertex_offset < vertex_count) { size_t block_size = (vertex_offset + vertex_block_size < vertex_count) ? vertex_block_size : vertex_count - vertex_offset; data = decode(data, data_end, vertex_data + vertex_offset * vertex_size, block_size, vertex_size, last_vertex, channels, version); if (!data) return -2; vertex_offset += block_size; } if (size_t(data_end - data) != tail_size_pad) return -3; return 0; } #undef SIMD_NEON #undef SIMD_SSE #undef SIMD_AVX #undef SIMD_WASM #undef SIMD_FALLBACK #undef SIMD_TARGET #undef SIMD_LATENCYOPT