Some checks failed
🔗 GHA / 📊 Static checks (push) Has been cancelled
🔗 GHA / 🤖 Android (push) Has been cancelled
🔗 GHA / 🍏 iOS (push) Has been cancelled
🔗 GHA / 🐧 Linux (push) Has been cancelled
🔗 GHA / 🍎 macOS (push) Has been cancelled
🔗 GHA / 🏁 Windows (push) Has been cancelled
🔗 GHA / 🌐 Web (push) Has been cancelled
4203 lines
88 KiB
C++
4203 lines
88 KiB
C++
// basisu_containers.h
|
|
#pragma once
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <stdint.h>
|
|
#include <assert.h>
|
|
#include <algorithm>
|
|
|
|
#if defined(__linux__) && !defined(ANDROID)
|
|
// Only for malloc_usable_size() in basisu_containers_impl.h
|
|
#include <malloc.h>
|
|
#define HAS_MALLOC_USABLE_SIZE 1
|
|
#endif
|
|
|
|
// Set to 1 to always check vector operator[], front(), and back() even in release.
|
|
#define BASISU_VECTOR_FORCE_CHECKING 0
|
|
|
|
// If 1, the vector container will not query the CRT to get the size of resized memory blocks.
|
|
#define BASISU_VECTOR_DETERMINISTIC 1
|
|
|
|
#ifdef _MSC_VER
|
|
#define BASISU_FORCE_INLINE __forceinline
|
|
#else
|
|
#define BASISU_FORCE_INLINE inline
|
|
#endif
|
|
|
|
#define BASISU_HASHMAP_TEST 0
|
|
|
|
namespace basisu
|
|
{
|
|
enum { cInvalidIndex = -1 };
|
|
|
|
template <typename S> inline S clamp(S value, S low, S high) { return (value < low) ? low : ((value > high) ? high : value); }
|
|
|
|
template <typename S> inline S maximum(S a, S b) { return (a > b) ? a : b; }
|
|
template <typename S> inline S maximum(S a, S b, S c) { return maximum(maximum(a, b), c); }
|
|
template <typename S> inline S maximum(S a, S b, S c, S d) { return maximum(maximum(maximum(a, b), c), d); }
|
|
|
|
template <typename S> inline S minimum(S a, S b) { return (a < b) ? a : b; }
|
|
template <typename S> inline S minimum(S a, S b, S c) { return minimum(minimum(a, b), c); }
|
|
template <typename S> inline S minimum(S a, S b, S c, S d) { return minimum(minimum(minimum(a, b), c), d); }
|
|
|
|
#ifdef _MSC_VER
|
|
__declspec(noreturn)
|
|
#else
|
|
[[noreturn]]
|
|
#endif
|
|
void container_abort(const char* pMsg, ...);
|
|
|
|
namespace helpers
|
|
{
|
|
inline bool is_power_of_2(uint32_t x) { return x && ((x & (x - 1U)) == 0U); }
|
|
inline bool is_power_of_2(uint64_t x) { return x && ((x & (x - 1U)) == 0U); }
|
|
|
|
template<class T> const T& minimum(const T& a, const T& b) { return (b < a) ? b : a; }
|
|
template<class T> const T& maximum(const T& a, const T& b) { return (a < b) ? b : a; }
|
|
|
|
inline uint32_t floor_log2i(uint32_t v)
|
|
{
|
|
uint32_t l = 0;
|
|
while (v > 1U)
|
|
{
|
|
v >>= 1;
|
|
l++;
|
|
}
|
|
return l;
|
|
}
|
|
|
|
inline uint32_t floor_log2i(uint64_t v)
|
|
{
|
|
uint32_t l = 0;
|
|
while (v > 1U)
|
|
{
|
|
v >>= 1;
|
|
l++;
|
|
}
|
|
return l;
|
|
}
|
|
|
|
inline uint32_t next_pow2(uint32_t val)
|
|
{
|
|
val--;
|
|
val |= val >> 16;
|
|
val |= val >> 8;
|
|
val |= val >> 4;
|
|
val |= val >> 2;
|
|
val |= val >> 1;
|
|
return val + 1;
|
|
}
|
|
|
|
inline uint64_t next_pow2(uint64_t val)
|
|
{
|
|
val--;
|
|
val |= val >> 32;
|
|
val |= val >> 16;
|
|
val |= val >> 8;
|
|
val |= val >> 4;
|
|
val |= val >> 2;
|
|
val |= val >> 1;
|
|
return val + 1;
|
|
}
|
|
} // namespace helpers
|
|
|
|
template <typename T>
|
|
inline T* construct(T* p)
|
|
{
|
|
return new (static_cast<void*>(p)) T;
|
|
}
|
|
|
|
template <typename T, typename U>
|
|
inline T* construct(T* p, const U& init)
|
|
{
|
|
return new (static_cast<void*>(p)) T(init);
|
|
}
|
|
|
|
template <typename T>
|
|
inline void construct_array(T* p, size_t n)
|
|
{
|
|
T* q = p + n;
|
|
for (; p != q; ++p)
|
|
new (static_cast<void*>(p)) T;
|
|
}
|
|
|
|
template <typename T, typename U>
|
|
inline void construct_array(T* p, size_t n, const U& init)
|
|
{
|
|
T* q = p + n;
|
|
for (; p != q; ++p)
|
|
new (static_cast<void*>(p)) T(init);
|
|
}
|
|
|
|
template <typename T>
|
|
inline void destruct(T* p)
|
|
{
|
|
p->~T();
|
|
}
|
|
|
|
template <typename T> inline void destruct_array(T* p, size_t n)
|
|
{
|
|
T* q = p + n;
|
|
for (; p != q; ++p)
|
|
p->~T();
|
|
}
|
|
|
|
template<typename T>
|
|
struct scalar_type
|
|
{
|
|
enum { cFlag = false };
|
|
static inline void construct(T* p) { basisu::construct(p); }
|
|
static inline void construct(T* p, const T& init) { basisu::construct(p, init); }
|
|
static inline void construct_array(T* p, size_t n) { basisu::construct_array(p, n); }
|
|
static inline void destruct(T* p) { basisu::destruct(p); }
|
|
static inline void destruct_array(T* p, size_t n) { basisu::destruct_array(p, n); }
|
|
};
|
|
|
|
template<typename T> struct scalar_type<T*>
|
|
{
|
|
enum { cFlag = true };
|
|
static inline void construct(T** p) { memset(p, 0, sizeof(T*)); }
|
|
static inline void construct(T** p, T* init) { *p = init; }
|
|
static inline void construct_array(T** p, size_t n) { memset(p, 0, sizeof(T*) * n); }
|
|
static inline void destruct(T** p) { p; }
|
|
static inline void destruct_array(T** p, size_t n) { p, n; }
|
|
};
|
|
|
|
#define BASISU_DEFINE_BUILT_IN_TYPE(X) \
|
|
template<> struct scalar_type<X> { \
|
|
enum { cFlag = true }; \
|
|
static inline void construct(X* p) { memset(p, 0, sizeof(X)); } \
|
|
static inline void construct(X* p, const X& init) { memcpy(p, &init, sizeof(X)); } \
|
|
static inline void construct_array(X* p, size_t n) { memset(p, 0, sizeof(X) * n); } \
|
|
static inline void destruct(X* p) { p; } \
|
|
static inline void destruct_array(X* p, size_t n) { p, n; } };
|
|
|
|
BASISU_DEFINE_BUILT_IN_TYPE(bool)
|
|
BASISU_DEFINE_BUILT_IN_TYPE(char)
|
|
BASISU_DEFINE_BUILT_IN_TYPE(unsigned char)
|
|
BASISU_DEFINE_BUILT_IN_TYPE(short)
|
|
BASISU_DEFINE_BUILT_IN_TYPE(unsigned short)
|
|
BASISU_DEFINE_BUILT_IN_TYPE(int)
|
|
BASISU_DEFINE_BUILT_IN_TYPE(unsigned int)
|
|
BASISU_DEFINE_BUILT_IN_TYPE(long)
|
|
BASISU_DEFINE_BUILT_IN_TYPE(unsigned long)
|
|
#ifdef __GNUC__
|
|
BASISU_DEFINE_BUILT_IN_TYPE(long long)
|
|
BASISU_DEFINE_BUILT_IN_TYPE(unsigned long long)
|
|
#else
|
|
BASISU_DEFINE_BUILT_IN_TYPE(__int64)
|
|
BASISU_DEFINE_BUILT_IN_TYPE(unsigned __int64)
|
|
#endif
|
|
BASISU_DEFINE_BUILT_IN_TYPE(float)
|
|
BASISU_DEFINE_BUILT_IN_TYPE(double)
|
|
BASISU_DEFINE_BUILT_IN_TYPE(long double)
|
|
|
|
#undef BASISU_DEFINE_BUILT_IN_TYPE
|
|
|
|
template<typename T>
|
|
struct bitwise_movable { enum { cFlag = false }; };
|
|
|
|
#define BASISU_DEFINE_BITWISE_MOVABLE(Q) template<> struct bitwise_movable<Q> { enum { cFlag = true }; };
|
|
|
|
template<typename T>
|
|
struct bitwise_copyable { enum { cFlag = false }; };
|
|
|
|
#define BASISU_DEFINE_BITWISE_COPYABLE(Q) template<> struct bitwise_copyable<Q> { enum { cFlag = true }; };
|
|
|
|
#define BASISU_IS_POD(T) __is_pod(T)
|
|
|
|
#define BASISU_IS_SCALAR_TYPE(T) (scalar_type<T>::cFlag)
|
|
|
|
#if !defined(BASISU_HAVE_STD_TRIVIALLY_COPYABLE) && defined(__GNUC__) && (__GNUC__ < 5)
|
|
#define BASISU_IS_TRIVIALLY_COPYABLE(...) __is_trivially_copyable(__VA_ARGS__)
|
|
#else
|
|
#define BASISU_IS_TRIVIALLY_COPYABLE(...) std::is_trivially_copyable<__VA_ARGS__>::value
|
|
#endif
|
|
|
|
// TODO: clean this up, it's still confusing (copying vs. movable).
|
|
#define BASISU_IS_BITWISE_COPYABLE(T) (BASISU_IS_SCALAR_TYPE(T) || BASISU_IS_POD(T) || BASISU_IS_TRIVIALLY_COPYABLE(T) || std::is_trivial<T>::value || (bitwise_copyable<T>::cFlag))
|
|
|
|
#define BASISU_IS_BITWISE_COPYABLE_OR_MOVABLE(T) (BASISU_IS_BITWISE_COPYABLE(T) || (bitwise_movable<T>::cFlag))
|
|
|
|
#define BASISU_HAS_DESTRUCTOR(T) ((!scalar_type<T>::cFlag) && (!__is_pod(T)) && (!std::is_trivially_destructible<T>::value))
|
|
|
|
typedef char(&yes_t)[1];
|
|
typedef char(&no_t)[2];
|
|
|
|
template <class U> yes_t class_test(int U::*);
|
|
template <class U> no_t class_test(...);
|
|
|
|
template <class T> struct is_class
|
|
{
|
|
enum { value = (sizeof(class_test<T>(0)) == sizeof(yes_t)) };
|
|
};
|
|
|
|
template <typename T> struct is_pointer
|
|
{
|
|
enum { value = false };
|
|
};
|
|
|
|
template <typename T> struct is_pointer<T*>
|
|
{
|
|
enum { value = true };
|
|
};
|
|
|
|
struct empty_type { };
|
|
|
|
BASISU_DEFINE_BITWISE_COPYABLE(empty_type);
|
|
BASISU_DEFINE_BITWISE_MOVABLE(empty_type);
|
|
|
|
template<typename T> struct rel_ops
|
|
{
|
|
friend bool operator!=(const T& x, const T& y) { return (!(x == y)); }
|
|
friend bool operator> (const T& x, const T& y) { return (y < x); }
|
|
friend bool operator<=(const T& x, const T& y) { return (!(y < x)); }
|
|
friend bool operator>=(const T& x, const T& y) { return (!(x < y)); }
|
|
};
|
|
|
|
struct elemental_vector
|
|
{
|
|
void* m_p;
|
|
size_t m_size;
|
|
size_t m_capacity;
|
|
|
|
typedef void (*object_mover)(void* pDst, void* pSrc, size_t num);
|
|
|
|
bool increase_capacity(size_t min_new_capacity, bool grow_hint, size_t element_size, object_mover pRelocate, bool nofail);
|
|
};
|
|
|
|
// Returns true if a+b would overflow a size_t.
|
|
inline bool add_overflow_check(size_t a, size_t b)
|
|
{
|
|
size_t c = a + b;
|
|
return c < a;
|
|
}
|
|
|
|
// Returns false on overflow, true if OK.
|
|
template<typename T>
|
|
inline bool can_fit_into_size_t(T val)
|
|
{
|
|
static_assert(std::is_integral<T>::value, "T must be an integral type");
|
|
|
|
return (val >= 0) && (static_cast<size_t>(val) == val);
|
|
}
|
|
|
|
// Returns true if a*b would overflow a size_t.
|
|
inline bool mul_overflow_check(size_t a, size_t b)
|
|
{
|
|
// Avoid the division on 32-bit platforms
|
|
if (sizeof(size_t) == sizeof(uint32_t))
|
|
return !can_fit_into_size_t(static_cast<uint64_t>(a) * b);
|
|
else
|
|
return b && (a > (SIZE_MAX / b));
|
|
}
|
|
|
|
template<typename T>
|
|
class writable_span;
|
|
|
|
template<typename T>
|
|
class readable_span
|
|
{
|
|
public:
|
|
using value_type = T;
|
|
using size_type = size_t;
|
|
using const_pointer = const T*;
|
|
using const_reference = const T&;
|
|
using const_iterator = const T*;
|
|
|
|
inline readable_span() :
|
|
m_p(nullptr),
|
|
m_size(0)
|
|
{
|
|
}
|
|
|
|
inline readable_span(const writable_span<T>& other);
|
|
inline readable_span& operator= (const writable_span<T>& rhs);
|
|
|
|
inline readable_span(const_pointer p, size_t n)
|
|
{
|
|
set(p, n);
|
|
}
|
|
|
|
inline readable_span(const_pointer s, const_pointer e)
|
|
{
|
|
set(s, e);
|
|
}
|
|
|
|
inline readable_span(const readable_span& other) :
|
|
m_p(other.m_p),
|
|
m_size(other.m_size)
|
|
{
|
|
assert(!m_size || m_p);
|
|
}
|
|
|
|
inline readable_span(readable_span&& other) :
|
|
m_p(other.m_p),
|
|
m_size(other.m_size)
|
|
{
|
|
assert(!m_size || m_p);
|
|
|
|
other.m_p = nullptr;
|
|
other.m_size = 0;
|
|
}
|
|
|
|
template <size_t N>
|
|
inline readable_span(const T(&arr)[N]) :
|
|
m_p(arr),
|
|
m_size(N)
|
|
{
|
|
}
|
|
|
|
template <size_t N>
|
|
inline readable_span& set(const T(&arr)[N])
|
|
{
|
|
m_p = arr;
|
|
m_size = N;
|
|
return *this;
|
|
}
|
|
|
|
inline readable_span& set(const_pointer p, size_t n)
|
|
{
|
|
if (!p && n)
|
|
{
|
|
assert(0);
|
|
m_p = nullptr;
|
|
m_size = 0;
|
|
}
|
|
else
|
|
{
|
|
m_p = p;
|
|
m_size = n;
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
inline readable_span& set(const_pointer s, const_pointer e)
|
|
{
|
|
if ((e < s) || (!s && e))
|
|
{
|
|
assert(0);
|
|
m_p = nullptr;
|
|
m_size = 0;
|
|
}
|
|
else
|
|
{
|
|
m_p = s;
|
|
m_size = e - s;
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
inline bool operator== (const readable_span& rhs) const
|
|
{
|
|
return (m_p == rhs.m_p) && (m_size == rhs.m_size);
|
|
}
|
|
|
|
inline bool operator!= (const readable_span& rhs) const
|
|
{
|
|
return (m_p != rhs.m_p) || (m_size != rhs.m_size);
|
|
}
|
|
|
|
// only true if the region is totally inside the span
|
|
inline bool is_inside_ptr(const_pointer p, size_t n) const
|
|
{
|
|
if (!is_valid())
|
|
{
|
|
assert(0);
|
|
return false;
|
|
}
|
|
|
|
if (!p)
|
|
{
|
|
assert(!n);
|
|
return false;
|
|
}
|
|
|
|
return (p >= m_p) && ((p + n) <= end());
|
|
}
|
|
|
|
inline bool is_inside(size_t ofs, size_t size) const
|
|
{
|
|
if (add_overflow_check(ofs, size))
|
|
{
|
|
assert(0);
|
|
return false;
|
|
}
|
|
|
|
if (!is_valid())
|
|
{
|
|
assert(0);
|
|
return false;
|
|
}
|
|
|
|
if ((ofs + size) > m_size)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
inline readable_span subspan(size_t ofs, size_t n) const
|
|
{
|
|
if (!is_valid())
|
|
{
|
|
assert(0);
|
|
return readable_span((const_pointer)nullptr, (size_t)0);
|
|
}
|
|
|
|
if (add_overflow_check(ofs, n))
|
|
{
|
|
assert(0);
|
|
return readable_span((const_pointer)nullptr, (size_t)0);
|
|
}
|
|
|
|
if ((ofs + n) > m_size)
|
|
{
|
|
assert(0);
|
|
return readable_span((const_pointer)nullptr, (size_t)0);
|
|
}
|
|
|
|
return readable_span(m_p + ofs, n);
|
|
}
|
|
|
|
void clear()
|
|
{
|
|
m_p = nullptr;
|
|
m_size = 0;
|
|
}
|
|
|
|
inline bool empty() const { return !m_size; }
|
|
|
|
// true if the span is non-nullptr and is not empty
|
|
inline bool is_valid() const { return m_p && m_size; }
|
|
|
|
inline bool is_nullptr() const { return m_p == nullptr; }
|
|
|
|
inline size_t size() const { return m_size; }
|
|
inline size_t size_in_bytes() const { assert(can_fit_into_size_t((uint64_t)m_size * sizeof(T))); return m_size * sizeof(T); }
|
|
|
|
inline const_pointer get_ptr() const { return m_p; }
|
|
|
|
inline const_iterator begin() const { return m_p; }
|
|
inline const_iterator end() const { assert(m_p || !m_size); return m_p + m_size; }
|
|
|
|
inline const_iterator cbegin() const { return m_p; }
|
|
inline const_iterator cend() const { assert(m_p || !m_size); return m_p + m_size; }
|
|
|
|
inline const_reference front() const
|
|
{
|
|
if (!(m_p && m_size))
|
|
container_abort("readable_span invalid\n");
|
|
|
|
return m_p[0];
|
|
}
|
|
|
|
inline const_reference back() const
|
|
{
|
|
if (!(m_p && m_size))
|
|
container_abort("readable_span invalid\n");
|
|
|
|
return m_p[m_size - 1];
|
|
}
|
|
|
|
inline readable_span& operator= (const readable_span& rhs)
|
|
{
|
|
m_p = rhs.m_p;
|
|
m_size = rhs.m_size;
|
|
return *this;
|
|
}
|
|
|
|
inline readable_span& operator= (readable_span&& rhs)
|
|
{
|
|
if (this != &rhs)
|
|
{
|
|
m_p = rhs.m_p;
|
|
m_size = rhs.m_size;
|
|
rhs.m_p = nullptr;
|
|
rhs.m_size = 0;
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
inline const_reference operator* () const
|
|
{
|
|
if (!(m_p && m_size))
|
|
container_abort("readable_span invalid\n");
|
|
|
|
return *m_p;
|
|
}
|
|
|
|
inline const_pointer operator-> () const
|
|
{
|
|
if (!(m_p && m_size))
|
|
container_abort("readable_span invalid\n");
|
|
|
|
return m_p;
|
|
}
|
|
|
|
inline readable_span& remove_prefix(size_t n)
|
|
{
|
|
if ((!m_p) || (n > m_size))
|
|
{
|
|
assert(0);
|
|
return *this;
|
|
}
|
|
|
|
m_p += n;
|
|
m_size -= n;
|
|
return *this;
|
|
}
|
|
|
|
inline readable_span& remove_suffix(size_t n)
|
|
{
|
|
if ((!m_p) || (n > m_size))
|
|
{
|
|
assert(0);
|
|
return *this;
|
|
}
|
|
|
|
m_size -= n;
|
|
return *this;
|
|
}
|
|
|
|
inline readable_span& enlarge(size_t n)
|
|
{
|
|
if (!m_p)
|
|
{
|
|
assert(0);
|
|
return *this;
|
|
}
|
|
|
|
if (add_overflow_check(m_size, n))
|
|
{
|
|
assert(0);
|
|
return *this;
|
|
}
|
|
|
|
m_size += n;
|
|
return *this;
|
|
}
|
|
|
|
bool copy_from(size_t src_ofs, size_t src_size, T* pDst, size_t dst_ofs) const
|
|
{
|
|
if (!src_size)
|
|
return true;
|
|
|
|
if (!pDst)
|
|
{
|
|
assert(0);
|
|
return false;
|
|
}
|
|
|
|
if (!is_inside(src_ofs, src_size))
|
|
{
|
|
assert(0);
|
|
return false;
|
|
}
|
|
|
|
const_pointer pS = m_p + src_ofs;
|
|
|
|
if (BASISU_IS_BITWISE_COPYABLE(T))
|
|
{
|
|
const uint64_t num_bytes = (uint64_t)src_size * sizeof(T);
|
|
|
|
if (!can_fit_into_size_t(num_bytes))
|
|
{
|
|
assert(0);
|
|
return false;
|
|
}
|
|
|
|
memcpy(pDst, pS, (size_t)num_bytes);
|
|
}
|
|
else
|
|
{
|
|
T* pD = pDst + dst_ofs;
|
|
T* pDst_end = pD + src_size;
|
|
|
|
while (pD != pDst_end)
|
|
*pD++ = *pS++;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
inline const_reference operator[] (size_t idx) const
|
|
{
|
|
if ((!is_valid()) || (idx >= m_size))
|
|
container_abort("readable_span: invalid span or index\n");
|
|
|
|
return m_p[idx];
|
|
}
|
|
|
|
inline uint16_t read_le16(size_t ofs) const
|
|
{
|
|
static_assert(sizeof(T) == 1, "T must be byte size");
|
|
|
|
if (!is_inside(ofs, sizeof(uint16_t)))
|
|
{
|
|
assert(0);
|
|
return false;
|
|
}
|
|
|
|
const uint8_t a = (uint8_t)m_p[ofs];
|
|
const uint8_t b = (uint8_t)m_p[ofs + 1];
|
|
return a | (b << 8u);
|
|
}
|
|
|
|
template<typename R>
|
|
inline R read_val(size_t ofs) const
|
|
{
|
|
static_assert(sizeof(T) == 1, "T must be byte size");
|
|
|
|
if (!is_inside(ofs, sizeof(R)))
|
|
{
|
|
assert(0);
|
|
return (R)0;
|
|
}
|
|
|
|
return *reinterpret_cast<const R*>(&m_p[ofs]);
|
|
}
|
|
|
|
inline uint16_t read_be16(size_t ofs) const
|
|
{
|
|
static_assert(sizeof(T) == 1, "T must be byte size");
|
|
|
|
if (!is_inside(ofs, sizeof(uint16_t)))
|
|
{
|
|
assert(0);
|
|
return 0;
|
|
}
|
|
|
|
const uint8_t b = (uint8_t)m_p[ofs];
|
|
const uint8_t a = (uint8_t)m_p[ofs + 1];
|
|
return a | (b << 8u);
|
|
}
|
|
|
|
inline uint32_t read_le32(size_t ofs) const
|
|
{
|
|
static_assert(sizeof(T) == 1, "T must be byte size");
|
|
|
|
if (!is_inside(ofs, sizeof(uint32_t)))
|
|
{
|
|
assert(0);
|
|
return 0;
|
|
}
|
|
|
|
const uint8_t a = (uint8_t)m_p[ofs];
|
|
const uint8_t b = (uint8_t)m_p[ofs + 1];
|
|
const uint8_t c = (uint8_t)m_p[ofs + 2];
|
|
const uint8_t d = (uint8_t)m_p[ofs + 3];
|
|
return a | (b << 8u) | (c << 16u) | (d << 24u);
|
|
}
|
|
|
|
inline uint32_t read_be32(size_t ofs) const
|
|
{
|
|
static_assert(sizeof(T) == 1, "T must be byte size");
|
|
|
|
if (!is_inside(ofs, sizeof(uint32_t)))
|
|
{
|
|
assert(0);
|
|
return 0;
|
|
}
|
|
|
|
const uint8_t d = (uint8_t)m_p[ofs];
|
|
const uint8_t c = (uint8_t)m_p[ofs + 1];
|
|
const uint8_t b = (uint8_t)m_p[ofs + 2];
|
|
const uint8_t a = (uint8_t)m_p[ofs + 3];
|
|
return a | (b << 8u) | (c << 16u) | (d << 24u);
|
|
}
|
|
|
|
inline uint64_t read_le64(size_t ofs) const
|
|
{
|
|
if (!add_overflow_check(ofs, sizeof(uint64_t)))
|
|
{
|
|
assert(0);
|
|
return 0;
|
|
}
|
|
const uint64_t l = read_le32(ofs);
|
|
const uint64_t h = read_le32(ofs + sizeof(uint32_t));
|
|
return l | (h << 32u);
|
|
}
|
|
|
|
inline uint64_t read_be64(size_t ofs) const
|
|
{
|
|
if (!add_overflow_check(ofs, sizeof(uint64_t)))
|
|
{
|
|
assert(0);
|
|
return 0;
|
|
}
|
|
const uint64_t h = read_be32(ofs);
|
|
const uint64_t l = read_be32(ofs + sizeof(uint32_t));
|
|
return l | (h << 32u);
|
|
}
|
|
|
|
private:
|
|
const_pointer m_p;
|
|
size_t m_size;
|
|
};
|
|
|
|
template<typename T>
|
|
class writable_span
|
|
{
|
|
friend readable_span<T>;
|
|
|
|
public:
|
|
using value_type = T;
|
|
using size_type = size_t;
|
|
using const_pointer = const T*;
|
|
using const_reference = const T&;
|
|
using const_iterator = const T*;
|
|
using pointer = T*;
|
|
using reference = T&;
|
|
using iterator = T*;
|
|
|
|
inline writable_span() :
|
|
m_p(nullptr),
|
|
m_size(0)
|
|
{
|
|
}
|
|
|
|
inline writable_span(T* p, size_t n)
|
|
{
|
|
set(p, n);
|
|
}
|
|
|
|
inline writable_span(T* s, T* e)
|
|
{
|
|
set(s, e);
|
|
}
|
|
|
|
inline writable_span(const writable_span& other) :
|
|
m_p(other.m_p),
|
|
m_size(other.m_size)
|
|
{
|
|
assert(!m_size || m_p);
|
|
}
|
|
|
|
inline writable_span(writable_span&& other) :
|
|
m_p(other.m_p),
|
|
m_size(other.m_size)
|
|
{
|
|
assert(!m_size || m_p);
|
|
|
|
other.m_p = nullptr;
|
|
other.m_size = 0;
|
|
}
|
|
|
|
template <size_t N>
|
|
inline writable_span(T(&arr)[N]) :
|
|
m_p(arr),
|
|
m_size(N)
|
|
{
|
|
}
|
|
|
|
readable_span<T> get_readable_span() const
|
|
{
|
|
return readable_span<T>(m_p, m_size);
|
|
}
|
|
|
|
template <size_t N>
|
|
inline writable_span& set(T(&arr)[N])
|
|
{
|
|
m_p = arr;
|
|
m_size = N;
|
|
return *this;
|
|
}
|
|
|
|
inline writable_span& set(T* p, size_t n)
|
|
{
|
|
if (!p && n)
|
|
{
|
|
assert(0);
|
|
m_p = nullptr;
|
|
m_size = 0;
|
|
}
|
|
else
|
|
{
|
|
m_p = p;
|
|
m_size = n;
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
inline writable_span& set(T* s, T* e)
|
|
{
|
|
if ((e < s) || (!s && e))
|
|
{
|
|
assert(0);
|
|
m_p = nullptr;
|
|
m_size = 0;
|
|
}
|
|
else
|
|
{
|
|
m_p = s;
|
|
m_size = e - s;
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
inline bool operator== (const writable_span& rhs) const
|
|
{
|
|
return (m_p == rhs.m_p) && (m_size == rhs.m_size);
|
|
}
|
|
|
|
inline bool operator== (const readable_span<T>& rhs) const
|
|
{
|
|
return (m_p == rhs.m_p) && (m_size == rhs.m_size);
|
|
}
|
|
|
|
inline bool operator!= (const writable_span& rhs) const
|
|
{
|
|
return (m_p != rhs.m_p) || (m_size != rhs.m_size);
|
|
}
|
|
|
|
inline bool operator!= (const readable_span<T>& rhs) const
|
|
{
|
|
return (m_p != rhs.m_p) || (m_size != rhs.m_size);
|
|
}
|
|
|
|
// only true if the region is totally inside the span
|
|
inline bool is_inside_ptr(const_pointer p, size_t n) const
|
|
{
|
|
if (!is_valid())
|
|
{
|
|
assert(0);
|
|
return false;
|
|
}
|
|
|
|
if (!p)
|
|
{
|
|
assert(!n);
|
|
return false;
|
|
}
|
|
|
|
return (p >= m_p) && ((p + n) <= end());
|
|
}
|
|
|
|
inline bool is_inside(size_t ofs, size_t size) const
|
|
{
|
|
if (add_overflow_check(ofs, size))
|
|
{
|
|
assert(0);
|
|
return false;
|
|
}
|
|
|
|
if (!is_valid())
|
|
{
|
|
assert(0);
|
|
return false;
|
|
}
|
|
|
|
if ((ofs + size) > m_size)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
inline writable_span subspan(size_t ofs, size_t n) const
|
|
{
|
|
if (!is_valid())
|
|
{
|
|
assert(0);
|
|
return writable_span((T*)nullptr, (size_t)0);
|
|
}
|
|
|
|
if (add_overflow_check(ofs, n))
|
|
{
|
|
assert(0);
|
|
return writable_span((T*)nullptr, (size_t)0);
|
|
}
|
|
|
|
if ((ofs + n) > m_size)
|
|
{
|
|
assert(0);
|
|
return writable_span((T*)nullptr, (size_t)0);
|
|
}
|
|
|
|
return writable_span(m_p + ofs, n);
|
|
}
|
|
|
|
void clear()
|
|
{
|
|
m_p = nullptr;
|
|
m_size = 0;
|
|
}
|
|
|
|
inline bool empty() const { return !m_size; }
|
|
|
|
// true if the span is non-nullptr and is not empty
|
|
inline bool is_valid() const { return m_p && m_size; }
|
|
|
|
inline bool is_nullptr() const { return m_p == nullptr; }
|
|
|
|
inline size_t size() const { return m_size; }
|
|
inline size_t size_in_bytes() const { assert(can_fit_into_size_t((uint64_t)m_size * sizeof(T))); return m_size * sizeof(T); }
|
|
|
|
inline T* get_ptr() const { return m_p; }
|
|
|
|
inline iterator begin() const { return m_p; }
|
|
inline iterator end() const { assert(m_p || !m_size); return m_p + m_size; }
|
|
|
|
inline const_iterator cbegin() const { return m_p; }
|
|
inline const_iterator cend() const { assert(m_p || !m_size); return m_p + m_size; }
|
|
|
|
inline T& front() const
|
|
{
|
|
if (!(m_p && m_size))
|
|
container_abort("writable_span invalid\n");
|
|
|
|
return m_p[0];
|
|
}
|
|
|
|
inline T& back() const
|
|
{
|
|
if (!(m_p && m_size))
|
|
container_abort("writable_span invalid\n");
|
|
|
|
return m_p[m_size - 1];
|
|
}
|
|
|
|
inline writable_span& operator= (const writable_span& rhs)
|
|
{
|
|
m_p = rhs.m_p;
|
|
m_size = rhs.m_size;
|
|
return *this;
|
|
}
|
|
|
|
inline writable_span& operator= (writable_span&& rhs)
|
|
{
|
|
if (this != &rhs)
|
|
{
|
|
m_p = rhs.m_p;
|
|
m_size = rhs.m_size;
|
|
rhs.m_p = nullptr;
|
|
rhs.m_size = 0;
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
inline T& operator* () const
|
|
{
|
|
if (!(m_p && m_size))
|
|
container_abort("writable_span invalid\n");
|
|
|
|
return *m_p;
|
|
}
|
|
|
|
inline T* operator-> () const
|
|
{
|
|
if (!(m_p && m_size))
|
|
container_abort("writable_span invalid\n");
|
|
|
|
return m_p;
|
|
}
|
|
|
|
inline bool set_all(size_t ofs, size_t size, const_reference val)
|
|
{
|
|
if (!size)
|
|
return true;
|
|
|
|
if (!is_inside(ofs, size))
|
|
{
|
|
assert(0);
|
|
return false;
|
|
}
|
|
|
|
T* pDst = m_p + ofs;
|
|
|
|
if ((sizeof(T) == sizeof(uint8_t)) && (BASISU_IS_BITWISE_COPYABLE(T)))
|
|
{
|
|
memset(pDst, (int)((uint8_t)val), size);
|
|
}
|
|
else
|
|
{
|
|
|
|
T* pDst_end = pDst + size;
|
|
|
|
while (pDst != pDst_end)
|
|
*pDst++ = val;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
inline bool set_all(const_reference val)
|
|
{
|
|
return set_all(0, m_size, val);
|
|
}
|
|
|
|
inline writable_span& remove_prefix(size_t n)
|
|
{
|
|
if ((!m_p) || (n > m_size))
|
|
{
|
|
assert(0);
|
|
return *this;
|
|
}
|
|
|
|
m_p += n;
|
|
m_size -= n;
|
|
return *this;
|
|
}
|
|
|
|
inline writable_span& remove_suffix(size_t n)
|
|
{
|
|
if ((!m_p) || (n > m_size))
|
|
{
|
|
assert(0);
|
|
return *this;
|
|
}
|
|
|
|
m_size -= n;
|
|
return *this;
|
|
}
|
|
|
|
inline writable_span& enlarge(size_t n)
|
|
{
|
|
if (!m_p)
|
|
{
|
|
assert(0);
|
|
return *this;
|
|
}
|
|
|
|
if (add_overflow_check(m_size, n))
|
|
{
|
|
assert(0);
|
|
return *this;
|
|
}
|
|
|
|
m_size += n;
|
|
return *this;
|
|
}
|
|
|
|
// copy from this span to the destination ptr
|
|
bool copy_from(size_t src_ofs, size_t src_size, T* pDst, size_t dst_ofs) const
|
|
{
|
|
if (!src_size)
|
|
return true;
|
|
|
|
if (!pDst)
|
|
{
|
|
assert(0);
|
|
return false;
|
|
}
|
|
|
|
if (!is_inside(src_ofs, src_size))
|
|
{
|
|
assert(0);
|
|
return false;
|
|
}
|
|
|
|
const_pointer pS = m_p + src_ofs;
|
|
|
|
if (BASISU_IS_BITWISE_COPYABLE(T))
|
|
{
|
|
const uint64_t num_bytes = (uint64_t)src_size * sizeof(T);
|
|
|
|
if (!can_fit_into_size_t(num_bytes))
|
|
{
|
|
assert(0);
|
|
return false;
|
|
}
|
|
|
|
memcpy(pDst, pS, (size_t)num_bytes);
|
|
}
|
|
else
|
|
{
|
|
T* pD = pDst + dst_ofs;
|
|
T* pDst_end = pD + src_size;
|
|
|
|
while (pD != pDst_end)
|
|
*pD++ = *pS++;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// copy from the source ptr into this span
|
|
bool copy_into(const_pointer pSrc, size_t src_ofs, size_t src_size, size_t dst_ofs) const
|
|
{
|
|
if (!src_size)
|
|
return true;
|
|
|
|
if (!pSrc)
|
|
{
|
|
assert(0);
|
|
return false;
|
|
}
|
|
|
|
if (add_overflow_check(src_ofs, src_size) || add_overflow_check(dst_ofs, src_size))
|
|
{
|
|
assert(0);
|
|
return false;
|
|
}
|
|
|
|
if (!is_valid())
|
|
{
|
|
assert(0);
|
|
return false;
|
|
}
|
|
|
|
if (!is_inside(dst_ofs, src_size))
|
|
{
|
|
assert(0);
|
|
return false;
|
|
}
|
|
|
|
const_pointer pS = pSrc + src_ofs;
|
|
T* pD = m_p + dst_ofs;
|
|
|
|
if (BASISU_IS_BITWISE_COPYABLE(T))
|
|
{
|
|
const uint64_t num_bytes = (uint64_t)src_size * sizeof(T);
|
|
|
|
if (!can_fit_into_size_t(num_bytes))
|
|
{
|
|
assert(0);
|
|
return false;
|
|
}
|
|
|
|
memcpy(pD, pS, (size_t)num_bytes);
|
|
}
|
|
else
|
|
{
|
|
T* pDst_end = pD + src_size;
|
|
|
|
while (pD != pDst_end)
|
|
*pD++ = *pS++;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// copy from a source span into this span
|
|
bool copy_into(const readable_span<T>& src, size_t src_ofs, size_t src_size, size_t dst_ofs) const
|
|
{
|
|
if (!src.is_inside(src_ofs, src_size))
|
|
{
|
|
assert(0);
|
|
return false;
|
|
}
|
|
|
|
return copy_into(src.get_ptr(), src_ofs, src_size, dst_ofs);
|
|
}
|
|
|
|
// copy from a source span into this span
|
|
bool copy_into(const writable_span& src, size_t src_ofs, size_t src_size, size_t dst_ofs) const
|
|
{
|
|
if (!src.is_inside(src_ofs, src_size))
|
|
{
|
|
assert(0);
|
|
return false;
|
|
}
|
|
|
|
return copy_into(src.get_ptr(), src_ofs, src_size, dst_ofs);
|
|
}
|
|
|
|
inline T& operator[] (size_t idx) const
|
|
{
|
|
if ((!is_valid()) || (idx >= m_size))
|
|
container_abort("writable_span: invalid span or index\n");
|
|
|
|
return m_p[idx];
|
|
}
|
|
|
|
template<typename R>
|
|
inline R read_val(size_t ofs) const
|
|
{
|
|
static_assert(sizeof(T) == 1, "T must be byte size");
|
|
|
|
if (!is_inside(ofs, sizeof(R)))
|
|
{
|
|
assert(0);
|
|
return (R)0;
|
|
}
|
|
|
|
return *reinterpret_cast<const R*>(&m_p[ofs]);
|
|
}
|
|
|
|
template<typename R>
|
|
inline bool write_val(size_t ofs, R val) const
|
|
{
|
|
static_assert(sizeof(T) == 1, "T must be byte size");
|
|
|
|
if (!is_inside(ofs, sizeof(R)))
|
|
{
|
|
assert(0);
|
|
return false;
|
|
}
|
|
|
|
*reinterpret_cast<R*>(&m_p[ofs]) = val;
|
|
return true;
|
|
}
|
|
|
|
inline bool write_le16(size_t ofs, uint16_t val) const
|
|
{
|
|
static_assert(sizeof(T) == 1, "T must be byte size");
|
|
|
|
if (!is_inside(ofs, sizeof(uint16_t)))
|
|
{
|
|
assert(0);
|
|
return false;
|
|
}
|
|
|
|
m_p[ofs] = (uint8_t)val;
|
|
m_p[ofs + 1] = (uint8_t)(val >> 8u);
|
|
return true;
|
|
}
|
|
|
|
inline bool write_be16(size_t ofs, uint16_t val) const
|
|
{
|
|
static_assert(sizeof(T) == 1, "T must be byte size");
|
|
|
|
if (!is_inside(ofs, sizeof(uint16_t)))
|
|
{
|
|
assert(0);
|
|
return false;
|
|
}
|
|
|
|
m_p[ofs + 1] = (uint8_t)val;
|
|
m_p[ofs] = (uint8_t)(val >> 8u);
|
|
return true;
|
|
}
|
|
|
|
inline bool write_le32(size_t ofs, uint32_t val) const
|
|
{
|
|
static_assert(sizeof(T) == 1, "T must be byte size");
|
|
|
|
if (!is_inside(ofs, sizeof(uint32_t)))
|
|
{
|
|
assert(0);
|
|
return false;
|
|
}
|
|
|
|
m_p[ofs] = (uint8_t)val;
|
|
m_p[ofs + 1] = (uint8_t)(val >> 8u);
|
|
m_p[ofs + 2] = (uint8_t)(val >> 16u);
|
|
m_p[ofs + 3] = (uint8_t)(val >> 24u);
|
|
return true;
|
|
}
|
|
|
|
inline bool write_be32(size_t ofs, uint32_t val) const
|
|
{
|
|
static_assert(sizeof(T) == 1, "T must be byte size");
|
|
|
|
if (!is_inside(ofs, sizeof(uint32_t)))
|
|
{
|
|
assert(0);
|
|
return false;
|
|
}
|
|
|
|
m_p[ofs + 3] = (uint8_t)val;
|
|
m_p[ofs + 2] = (uint8_t)(val >> 8u);
|
|
m_p[ofs + 1] = (uint8_t)(val >> 16u);
|
|
m_p[ofs] = (uint8_t)(val >> 24u);
|
|
return true;
|
|
}
|
|
|
|
inline bool write_le64(size_t ofs, uint64_t val) const
|
|
{
|
|
if (!add_overflow_check(ofs, sizeof(uint64_t)))
|
|
{
|
|
assert(0);
|
|
return false;
|
|
}
|
|
|
|
return write_le32(ofs, (uint32_t)val) && write_le32(ofs + sizeof(uint32_t), (uint32_t)(val >> 32u));
|
|
}
|
|
|
|
inline bool write_be64(size_t ofs, uint64_t val) const
|
|
{
|
|
if (!add_overflow_check(ofs, sizeof(uint64_t)))
|
|
{
|
|
assert(0);
|
|
return false;
|
|
}
|
|
|
|
return write_be32(ofs + sizeof(uint32_t), (uint32_t)val) && write_be32(ofs, (uint32_t)(val >> 32u));
|
|
}
|
|
|
|
inline uint16_t read_le16(size_t ofs) const
|
|
{
|
|
static_assert(sizeof(T) == 1, "T must be byte size");
|
|
|
|
if (!is_inside(ofs, sizeof(uint16_t)))
|
|
{
|
|
assert(0);
|
|
return 0;
|
|
}
|
|
|
|
const uint8_t a = (uint8_t)m_p[ofs];
|
|
const uint8_t b = (uint8_t)m_p[ofs + 1];
|
|
return a | (b << 8u);
|
|
}
|
|
|
|
inline uint16_t read_be16(size_t ofs) const
|
|
{
|
|
static_assert(sizeof(T) == 1, "T must be byte size");
|
|
|
|
if (!is_inside(ofs, sizeof(uint16_t)))
|
|
{
|
|
assert(0);
|
|
return 0;
|
|
}
|
|
|
|
const uint8_t b = (uint8_t)m_p[ofs];
|
|
const uint8_t a = (uint8_t)m_p[ofs + 1];
|
|
return a | (b << 8u);
|
|
}
|
|
|
|
inline uint32_t read_le32(size_t ofs) const
|
|
{
|
|
static_assert(sizeof(T) == 1, "T must be byte size");
|
|
|
|
if (!is_inside(ofs, sizeof(uint32_t)))
|
|
{
|
|
assert(0);
|
|
return 0;
|
|
}
|
|
|
|
const uint8_t a = (uint8_t)m_p[ofs];
|
|
const uint8_t b = (uint8_t)m_p[ofs + 1];
|
|
const uint8_t c = (uint8_t)m_p[ofs + 2];
|
|
const uint8_t d = (uint8_t)m_p[ofs + 3];
|
|
return a | (b << 8u) | (c << 16u) | (d << 24u);
|
|
}
|
|
|
|
inline uint32_t read_be32(size_t ofs) const
|
|
{
|
|
static_assert(sizeof(T) == 1, "T must be byte size");
|
|
|
|
if (!is_inside(ofs, sizeof(uint32_t)))
|
|
{
|
|
assert(0);
|
|
return 0;
|
|
}
|
|
|
|
const uint8_t d = (uint8_t)m_p[ofs];
|
|
const uint8_t c = (uint8_t)m_p[ofs + 1];
|
|
const uint8_t b = (uint8_t)m_p[ofs + 2];
|
|
const uint8_t a = (uint8_t)m_p[ofs + 3];
|
|
return a | (b << 8u) | (c << 16u) | (d << 24u);
|
|
}
|
|
|
|
inline uint64_t read_le64(size_t ofs) const
|
|
{
|
|
if (!add_overflow_check(ofs, sizeof(uint64_t)))
|
|
{
|
|
assert(0);
|
|
return 0;
|
|
}
|
|
const uint64_t l = read_le32(ofs);
|
|
const uint64_t h = read_le32(ofs + sizeof(uint32_t));
|
|
return l | (h << 32u);
|
|
}
|
|
|
|
inline uint64_t read_be64(size_t ofs) const
|
|
{
|
|
if (!add_overflow_check(ofs, sizeof(uint64_t)))
|
|
{
|
|
assert(0);
|
|
return 0;
|
|
}
|
|
const uint64_t h = read_be32(ofs);
|
|
const uint64_t l = read_be32(ofs + sizeof(uint32_t));
|
|
return l | (h << 32u);
|
|
}
|
|
|
|
private:
|
|
T* m_p;
|
|
size_t m_size;
|
|
};
|
|
|
|
template<typename T>
|
|
inline readable_span<T>::readable_span(const writable_span<T>& other) :
|
|
m_p(other.m_p),
|
|
m_size(other.m_size)
|
|
{
|
|
}
|
|
|
|
template<typename T>
|
|
inline readable_span<T>& readable_span<T>::operator= (const writable_span<T>& rhs)
|
|
{
|
|
m_p = rhs.m_p;
|
|
m_size = rhs.m_size;
|
|
return *this;
|
|
}
|
|
|
|
template<typename T>
|
|
inline bool span_copy(const writable_span<T>& dst, const readable_span<T>& src)
|
|
{
|
|
return dst.copy_into(src, 0, src.size(), 0);
|
|
}
|
|
|
|
template<typename T>
|
|
inline bool span_copy(const writable_span<T>& dst, const writable_span<T>& src)
|
|
{
|
|
return dst.copy_into(src, 0, src.size(), 0);
|
|
}
|
|
|
|
template<typename T>
|
|
inline bool span_copy(const writable_span<T>& dst, size_t dst_ofs, const writable_span<T>& src, size_t src_ofs, size_t len)
|
|
{
|
|
return dst.copy_into(src, src_ofs, len, dst_ofs);
|
|
}
|
|
|
|
template<typename T>
|
|
inline bool span_copy(const writable_span<T>& dst, size_t dst_ofs, const readable_span<T>& src, size_t src_ofs, size_t len)
|
|
{
|
|
return dst.copy_into(src, src_ofs, len, dst_ofs);
|
|
}
|
|
|
|
template<typename T>
|
|
class vector : public rel_ops< vector<T> >
|
|
{
|
|
public:
|
|
typedef T* iterator;
|
|
typedef const T* const_iterator;
|
|
typedef T value_type;
|
|
typedef T& reference;
|
|
typedef const T& const_reference;
|
|
typedef T* pointer;
|
|
typedef const T* const_pointer;
|
|
|
|
inline vector() :
|
|
m_p(nullptr),
|
|
m_size(0),
|
|
m_capacity(0)
|
|
{
|
|
}
|
|
|
|
inline vector(size_t n, const T& init) :
|
|
m_p(nullptr),
|
|
m_size(0),
|
|
m_capacity(0)
|
|
{
|
|
increase_capacity(n, false);
|
|
construct_array(m_p, n, init);
|
|
m_size = n;
|
|
}
|
|
|
|
inline vector(vector&& other) :
|
|
m_p(other.m_p),
|
|
m_size(other.m_size),
|
|
m_capacity(other.m_capacity)
|
|
{
|
|
other.m_p = nullptr;
|
|
other.m_size = 0;
|
|
other.m_capacity = 0;
|
|
}
|
|
|
|
inline vector(const vector& other) :
|
|
m_p(nullptr),
|
|
m_size(0),
|
|
m_capacity(0)
|
|
{
|
|
increase_capacity(other.m_size, false);
|
|
|
|
m_size = other.m_size;
|
|
|
|
if (BASISU_IS_BITWISE_COPYABLE(T))
|
|
{
|
|
|
|
#ifndef __EMSCRIPTEN__
|
|
#ifdef __GNUC__
|
|
#pragma GCC diagnostic push
|
|
#pragma GCC diagnostic ignored "-Wclass-memaccess"
|
|
#endif
|
|
#endif
|
|
if ((m_p) && (other.m_p))
|
|
{
|
|
memcpy(m_p, other.m_p, m_size * sizeof(T));
|
|
}
|
|
#ifndef __EMSCRIPTEN__
|
|
#ifdef __GNUC__
|
|
#pragma GCC diagnostic pop
|
|
#endif
|
|
#endif
|
|
}
|
|
else
|
|
{
|
|
T* pDst = m_p;
|
|
const T* pSrc = other.m_p;
|
|
for (size_t i = m_size; i > 0; i--)
|
|
construct(pDst++, *pSrc++);
|
|
}
|
|
}
|
|
|
|
inline explicit vector(size_t size) :
|
|
m_p(nullptr),
|
|
m_size(0),
|
|
m_capacity(0)
|
|
{
|
|
resize(size);
|
|
}
|
|
|
|
inline explicit vector(std::initializer_list<T> init_list) :
|
|
m_p(nullptr),
|
|
m_size(0),
|
|
m_capacity(0)
|
|
{
|
|
resize(init_list.size());
|
|
|
|
size_t idx = 0;
|
|
for (const T& elem : init_list)
|
|
m_p[idx++] = elem;
|
|
|
|
assert(idx == m_size);
|
|
}
|
|
|
|
inline vector(const readable_span<T>& rs) :
|
|
m_p(nullptr),
|
|
m_size(0),
|
|
m_capacity(0)
|
|
{
|
|
set(rs);
|
|
}
|
|
|
|
inline vector(const writable_span<T>& ws) :
|
|
m_p(nullptr),
|
|
m_size(0),
|
|
m_capacity(0)
|
|
{
|
|
set(ws);
|
|
}
|
|
|
|
// Set contents of vector to contents of the readable span
|
|
bool set(const readable_span<T>& rs)
|
|
{
|
|
if (!rs.is_valid())
|
|
{
|
|
assert(0);
|
|
return false;
|
|
}
|
|
|
|
const size_t new_size = rs.size();
|
|
|
|
// Could call resize(), but it'll redundantly construct trivial types.
|
|
if (m_size != new_size)
|
|
{
|
|
if (new_size < m_size)
|
|
{
|
|
if (BASISU_HAS_DESTRUCTOR(T))
|
|
{
|
|
scalar_type<T>::destruct_array(m_p + new_size, m_size - new_size);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (new_size > m_capacity)
|
|
{
|
|
if (!increase_capacity(new_size, false, true))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Don't bother constructing trivial types, because we're going to memcpy() over them anyway.
|
|
if (!BASISU_IS_BITWISE_COPYABLE(T))
|
|
{
|
|
scalar_type<T>::construct_array(m_p + m_size, new_size - m_size);
|
|
}
|
|
|
|
m_size = new_size;
|
|
}
|
|
|
|
if (!rs.copy_from(0, rs.size(), m_p, 0))
|
|
{
|
|
assert(0);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Set contents of vector to contents of the writable span
|
|
inline bool set(const writable_span<T>& ws)
|
|
{
|
|
return set(ws.get_readable_span());
|
|
}
|
|
|
|
inline ~vector()
|
|
{
|
|
if (m_p)
|
|
{
|
|
if (BASISU_HAS_DESTRUCTOR(T))
|
|
{
|
|
scalar_type<T>::destruct_array(m_p, m_size);
|
|
}
|
|
|
|
free(m_p);
|
|
}
|
|
}
|
|
|
|
inline vector& operator= (const vector& other)
|
|
{
|
|
if (this == &other)
|
|
return *this;
|
|
|
|
if (m_capacity >= other.m_size)
|
|
resize(0);
|
|
else
|
|
{
|
|
clear();
|
|
increase_capacity(other.m_size, false);
|
|
}
|
|
|
|
if (BASISU_IS_BITWISE_COPYABLE(T))
|
|
{
|
|
#ifndef __EMSCRIPTEN__
|
|
#ifdef __GNUC__
|
|
#pragma GCC diagnostic push
|
|
#pragma GCC diagnostic ignored "-Wclass-memaccess"
|
|
#endif
|
|
#endif
|
|
if ((m_p) && (other.m_p))
|
|
memcpy(m_p, other.m_p, other.m_size * sizeof(T));
|
|
#ifndef __EMSCRIPTEN__
|
|
#ifdef __GNUC__
|
|
#pragma GCC diagnostic pop
|
|
#endif
|
|
#endif
|
|
}
|
|
else
|
|
{
|
|
T* pDst = m_p;
|
|
const T* pSrc = other.m_p;
|
|
for (size_t i = other.m_size; i > 0; i--)
|
|
construct(pDst++, *pSrc++);
|
|
}
|
|
|
|
m_size = other.m_size;
|
|
|
|
return *this;
|
|
}
|
|
|
|
inline vector& operator= (vector&& rhs)
|
|
{
|
|
if (this != &rhs)
|
|
{
|
|
clear();
|
|
|
|
m_p = rhs.m_p;
|
|
m_size = rhs.m_size;
|
|
m_capacity = rhs.m_capacity;
|
|
|
|
rhs.m_p = nullptr;
|
|
rhs.m_size = 0;
|
|
rhs.m_capacity = 0;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
BASISU_FORCE_INLINE const T* begin() const { return m_p; }
|
|
BASISU_FORCE_INLINE T* begin() { return m_p; }
|
|
|
|
BASISU_FORCE_INLINE const T* end() const { return m_p + m_size; }
|
|
BASISU_FORCE_INLINE T* end() { return m_p + m_size; }
|
|
|
|
BASISU_FORCE_INLINE bool empty() const { return !m_size; }
|
|
|
|
BASISU_FORCE_INLINE size_t size() const { return m_size; }
|
|
BASISU_FORCE_INLINE uint32_t size_u32() const { assert(m_size <= UINT32_MAX); return static_cast<uint32_t>(m_size); }
|
|
|
|
BASISU_FORCE_INLINE size_t size_in_bytes() const { return m_size * sizeof(T); }
|
|
BASISU_FORCE_INLINE uint32_t size_in_bytes_u32() const { assert((m_size * sizeof(T)) <= UINT32_MAX); return static_cast<uint32_t>(m_size * sizeof(T)); }
|
|
|
|
BASISU_FORCE_INLINE size_t capacity() const { return m_capacity; }
|
|
|
|
#if !BASISU_VECTOR_FORCE_CHECKING
|
|
BASISU_FORCE_INLINE const T& operator[] (size_t i) const { assert(i < m_size); return m_p[i]; }
|
|
BASISU_FORCE_INLINE T& operator[] (size_t i) { assert(i < m_size); return m_p[i]; }
|
|
#else
|
|
BASISU_FORCE_INLINE const T& operator[] (size_t i) const
|
|
{
|
|
if (i >= m_size)
|
|
container_abort("vector::operator[] invalid index: %zu, max entries %u, type size %zu\n", i, m_size, sizeof(T));
|
|
|
|
return m_p[i];
|
|
}
|
|
BASISU_FORCE_INLINE T& operator[] (size_t i)
|
|
{
|
|
if (i >= m_size)
|
|
container_abort("vector::operator[] invalid index: %zu, max entries %u, type size %zu\n", i, m_size, sizeof(T));
|
|
|
|
return m_p[i];
|
|
}
|
|
#endif
|
|
|
|
// at() always includes range checking, even in final builds, unlike operator [].
|
|
BASISU_FORCE_INLINE const T& at(size_t i) const
|
|
{
|
|
if (i >= m_size)
|
|
container_abort("vector::at() invalid index: %zu, max entries %u, type size %zu\n", i, m_size, sizeof(T));
|
|
|
|
return m_p[i];
|
|
}
|
|
BASISU_FORCE_INLINE T& at(size_t i)
|
|
{
|
|
if (i >= m_size)
|
|
container_abort("vector::at() invalid index: %zu, max entries %u, type size %zu\n", i, m_size, sizeof(T));
|
|
|
|
return m_p[i];
|
|
}
|
|
|
|
#if !BASISU_VECTOR_FORCE_CHECKING
|
|
BASISU_FORCE_INLINE const T& front() const { assert(m_size); return m_p[0]; }
|
|
BASISU_FORCE_INLINE T& front() { assert(m_size); return m_p[0]; }
|
|
|
|
BASISU_FORCE_INLINE const T& back() const { assert(m_size); return m_p[m_size - 1]; }
|
|
BASISU_FORCE_INLINE T& back() { assert(m_size); return m_p[m_size - 1]; }
|
|
#else
|
|
BASISU_FORCE_INLINE const T& front() const
|
|
{
|
|
if (!m_size)
|
|
container_abort("front: vector is empty, type size %zu\n", sizeof(T));
|
|
|
|
return m_p[0];
|
|
}
|
|
BASISU_FORCE_INLINE T& front()
|
|
{
|
|
if (!m_size)
|
|
container_abort("front: vector is empty, type size %zu\n", sizeof(T));
|
|
|
|
return m_p[0];
|
|
}
|
|
|
|
BASISU_FORCE_INLINE const T& back() const
|
|
{
|
|
if (!m_size)
|
|
container_abort("back: vector is empty, type size %zu\n", sizeof(T));
|
|
|
|
return m_p[m_size - 1];
|
|
}
|
|
BASISU_FORCE_INLINE T& back()
|
|
{
|
|
if (!m_size)
|
|
container_abort("back: vector is empty, type size %zu\n", sizeof(T));
|
|
|
|
return m_p[m_size - 1];
|
|
}
|
|
#endif
|
|
|
|
BASISU_FORCE_INLINE const T* get_ptr() const { return m_p; }
|
|
BASISU_FORCE_INLINE T* get_ptr() { return m_p; }
|
|
|
|
BASISU_FORCE_INLINE const T* data() const { return m_p; }
|
|
BASISU_FORCE_INLINE T* data() { return m_p; }
|
|
|
|
// clear() sets the container to empty, then frees the allocated block.
|
|
inline void clear()
|
|
{
|
|
if (m_p)
|
|
{
|
|
if (BASISU_HAS_DESTRUCTOR(T))
|
|
{
|
|
scalar_type<T>::destruct_array(m_p, m_size);
|
|
}
|
|
|
|
free(m_p);
|
|
|
|
m_p = nullptr;
|
|
m_size = 0;
|
|
m_capacity = 0;
|
|
}
|
|
}
|
|
|
|
inline void clear_no_destruction()
|
|
{
|
|
if (m_p)
|
|
{
|
|
free(m_p);
|
|
m_p = nullptr;
|
|
m_size = 0;
|
|
m_capacity = 0;
|
|
}
|
|
}
|
|
|
|
inline void reserve(size_t new_capacity)
|
|
{
|
|
if (!try_reserve(new_capacity))
|
|
container_abort("vector:reserve: try_reserve failed!\n");
|
|
}
|
|
|
|
inline bool try_reserve(size_t new_capacity)
|
|
{
|
|
if (new_capacity > m_capacity)
|
|
{
|
|
if (!increase_capacity(new_capacity, false, true))
|
|
return false;
|
|
}
|
|
else if (new_capacity < m_capacity)
|
|
{
|
|
// Must work around the lack of a "decrease_capacity()" method.
|
|
// This case is rare enough in practice that it's probably not worth implementing an optimized in-place resize.
|
|
vector tmp;
|
|
if (!tmp.increase_capacity(helpers::maximum(m_size, new_capacity), false, true))
|
|
return false;
|
|
|
|
tmp = *this;
|
|
swap(tmp);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// try_resize(0) sets the container to empty, but does not free the allocated block.
|
|
inline bool try_resize(size_t new_size, bool grow_hint = false)
|
|
{
|
|
if (m_size != new_size)
|
|
{
|
|
if (new_size < m_size)
|
|
{
|
|
if (BASISU_HAS_DESTRUCTOR(T))
|
|
{
|
|
scalar_type<T>::destruct_array(m_p + new_size, m_size - new_size);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (new_size > m_capacity)
|
|
{
|
|
if (!increase_capacity(new_size, (new_size == (m_size + 1)) || grow_hint, true))
|
|
return false;
|
|
}
|
|
|
|
scalar_type<T>::construct_array(m_p + m_size, new_size - m_size);
|
|
}
|
|
|
|
m_size = new_size;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// resize(0) sets the container to empty, but does not free the allocated block.
|
|
inline void resize(size_t new_size, bool grow_hint = false)
|
|
{
|
|
if (!try_resize(new_size, grow_hint))
|
|
container_abort("vector::resize failed, new size %zu\n", new_size);
|
|
}
|
|
|
|
// If size >= capacity/2, reset() sets the container's size to 0 but doesn't free the allocated block (because the container may be similarly loaded in the future).
|
|
// Otherwise it blows away the allocated block. See http://www.codercorner.com/blog/?p=494
|
|
inline void reset()
|
|
{
|
|
if (m_size >= (m_capacity >> 1))
|
|
resize(0);
|
|
else
|
|
clear();
|
|
}
|
|
|
|
inline T* try_enlarge(size_t i)
|
|
{
|
|
size_t cur_size = m_size;
|
|
|
|
if (add_overflow_check(cur_size, i))
|
|
return nullptr;
|
|
|
|
if (!try_resize(cur_size + i, true))
|
|
return nullptr;
|
|
|
|
return get_ptr() + cur_size;
|
|
}
|
|
|
|
inline T* enlarge(size_t i)
|
|
{
|
|
T* p = try_enlarge(i);
|
|
if (!p)
|
|
container_abort("vector::enlarge failed, amount %zu!\n", i);
|
|
return p;
|
|
}
|
|
|
|
BASISU_FORCE_INLINE void push_back(const T& obj)
|
|
{
|
|
assert(!m_p || (&obj < m_p) || (&obj >= (m_p + m_size)));
|
|
|
|
if (m_size >= m_capacity)
|
|
{
|
|
if (add_overflow_check(m_size, 1))
|
|
container_abort("vector::push_back: vector too large\n");
|
|
|
|
increase_capacity(m_size + 1, true);
|
|
}
|
|
|
|
scalar_type<T>::construct(m_p + m_size, obj);
|
|
m_size++;
|
|
}
|
|
|
|
BASISU_FORCE_INLINE void push_back_value(T&& obj)
|
|
{
|
|
assert(!m_p || (&obj < m_p) || (&obj >= (m_p + m_size)));
|
|
|
|
if (m_size >= m_capacity)
|
|
{
|
|
if (add_overflow_check(m_size, 1))
|
|
container_abort("vector::push_back_value: vector too large\n");
|
|
|
|
increase_capacity(m_size + 1, true);
|
|
}
|
|
|
|
new ((void*)(m_p + m_size)) T(std::move(obj));
|
|
m_size++;
|
|
}
|
|
|
|
inline bool try_push_back(const T& obj)
|
|
{
|
|
assert(!m_p || (&obj < m_p) || (&obj >= (m_p + m_size)));
|
|
|
|
if (m_size >= m_capacity)
|
|
{
|
|
if (add_overflow_check(m_size, 1))
|
|
return false;
|
|
|
|
if (!increase_capacity(m_size + 1, true, true))
|
|
return false;
|
|
}
|
|
|
|
scalar_type<T>::construct(m_p + m_size, obj);
|
|
m_size++;
|
|
|
|
return true;
|
|
}
|
|
|
|
inline bool try_push_back(T&& obj)
|
|
{
|
|
assert(!m_p || (&obj < m_p) || (&obj >= (m_p + m_size)));
|
|
|
|
if (m_size >= m_capacity)
|
|
{
|
|
if (add_overflow_check(m_size, 1))
|
|
return false;
|
|
|
|
if (!increase_capacity(m_size + 1, true, true))
|
|
return false;
|
|
}
|
|
|
|
new ((void*)(m_p + m_size)) T(std::move(obj));
|
|
m_size++;
|
|
|
|
return true;
|
|
}
|
|
|
|
// obj is explictly passed in by value, not ref
|
|
inline void push_back_value(T obj)
|
|
{
|
|
if (m_size >= m_capacity)
|
|
{
|
|
if (add_overflow_check(m_size, 1))
|
|
container_abort("vector::push_back_value: vector too large\n");
|
|
|
|
increase_capacity(m_size + 1, true);
|
|
}
|
|
|
|
scalar_type<T>::construct(m_p + m_size, obj);
|
|
m_size++;
|
|
}
|
|
|
|
// obj is explictly passed in by value, not ref
|
|
inline bool try_push_back_value(T obj)
|
|
{
|
|
if (m_size >= m_capacity)
|
|
{
|
|
if (add_overflow_check(m_size, 1))
|
|
return false;
|
|
|
|
if (!increase_capacity(m_size + 1, true, true))
|
|
return false;
|
|
}
|
|
|
|
scalar_type<T>::construct(m_p + m_size, obj);
|
|
m_size++;
|
|
|
|
return true;
|
|
}
|
|
|
|
template<typename... Args>
|
|
BASISU_FORCE_INLINE void emplace_back(Args&&... args)
|
|
{
|
|
if (m_size >= m_capacity)
|
|
{
|
|
if (add_overflow_check(m_size, 1))
|
|
container_abort("vector::enlarge: vector too large\n");
|
|
|
|
increase_capacity(m_size + 1, true);
|
|
}
|
|
|
|
new ((void*)(m_p + m_size)) T(std::forward<Args>(args)...); // perfect forwarding
|
|
m_size++;
|
|
}
|
|
|
|
template<typename... Args>
|
|
BASISU_FORCE_INLINE bool try_emplace_back(Args&&... args)
|
|
{
|
|
if (m_size >= m_capacity)
|
|
{
|
|
if (add_overflow_check(m_size, 1))
|
|
return false;
|
|
|
|
if (!increase_capacity(m_size + 1, true, true))
|
|
return false;
|
|
}
|
|
|
|
new ((void*)(m_p + m_size)) T(std::forward<Args>(args)...); // perfect forwarding
|
|
m_size++;
|
|
|
|
return true;
|
|
}
|
|
|
|
inline void pop_back()
|
|
{
|
|
assert(m_size);
|
|
|
|
if (m_size)
|
|
{
|
|
m_size--;
|
|
scalar_type<T>::destruct(&m_p[m_size]);
|
|
}
|
|
}
|
|
|
|
inline bool try_insert(size_t index, const T* p, size_t n)
|
|
{
|
|
assert(index <= m_size);
|
|
|
|
if (index > m_size)
|
|
return false;
|
|
|
|
if (!n)
|
|
return true;
|
|
|
|
const size_t orig_size = m_size;
|
|
|
|
if (add_overflow_check(m_size, n))
|
|
return false;
|
|
|
|
if (!try_resize(m_size + n, true))
|
|
return false;
|
|
|
|
const size_t num_to_move = orig_size - index;
|
|
|
|
if (BASISU_IS_BITWISE_COPYABLE(T))
|
|
{
|
|
// This overwrites the destination object bits, but bitwise copyable means we don't need to worry about destruction.
|
|
memmove(m_p + index + n, m_p + index, sizeof(T) * num_to_move);
|
|
}
|
|
else
|
|
{
|
|
const T* pSrc = m_p + orig_size - 1;
|
|
T* pDst = const_cast<T*>(pSrc) + n;
|
|
|
|
for (size_t i = 0; i < num_to_move; i++)
|
|
{
|
|
assert((uint64_t)(pDst - m_p) < (uint64_t)m_size);
|
|
|
|
*pDst = std::move(*pSrc);
|
|
pDst--;
|
|
pSrc--;
|
|
}
|
|
}
|
|
|
|
T* pDst = m_p + index;
|
|
|
|
if (BASISU_IS_BITWISE_COPYABLE(T))
|
|
{
|
|
// This copies in the new bits, overwriting the existing objects, which is OK for copyable types that don't need destruction.
|
|
memcpy(pDst, p, sizeof(T) * n);
|
|
}
|
|
else
|
|
{
|
|
for (size_t i = 0; i < n; i++)
|
|
{
|
|
assert((uint64_t)(pDst - m_p) < (uint64_t)m_size);
|
|
*pDst++ = *p++;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
inline void insert(size_t index, const T* p, size_t n)
|
|
{
|
|
if (!try_insert(index, p, n))
|
|
container_abort("vector::insert() failed!\n");
|
|
}
|
|
|
|
inline bool try_insert(T* p, const T& obj)
|
|
{
|
|
if (p < begin())
|
|
{
|
|
assert(0);
|
|
return false;
|
|
}
|
|
|
|
uint64_t ofs = p - begin();
|
|
|
|
if (ofs > m_size)
|
|
{
|
|
assert(0);
|
|
return false;
|
|
}
|
|
|
|
if ((size_t)ofs != ofs)
|
|
{
|
|
assert(0);
|
|
return false;
|
|
}
|
|
|
|
return try_insert((size_t)ofs, &obj, 1);
|
|
}
|
|
|
|
inline void insert(T* p, const T& obj)
|
|
{
|
|
if (!try_insert(p, obj))
|
|
container_abort("vector::insert() failed!\n");
|
|
}
|
|
|
|
// push_front() isn't going to be very fast - it's only here for usability.
|
|
inline void push_front(const T& obj)
|
|
{
|
|
insert(0, &obj, 1);
|
|
}
|
|
|
|
inline bool try_push_front(const T& obj)
|
|
{
|
|
return try_insert(0, &obj, 1);
|
|
}
|
|
|
|
vector& append(const vector& other)
|
|
{
|
|
if (other.m_size)
|
|
insert(m_size, &other[0], other.m_size);
|
|
return *this;
|
|
}
|
|
|
|
bool try_append(const vector& other)
|
|
{
|
|
if (other.m_size)
|
|
return try_insert(m_size, &other[0], other.m_size);
|
|
|
|
return true;
|
|
}
|
|
|
|
vector& append(const T* p, size_t n)
|
|
{
|
|
if (n)
|
|
insert(m_size, p, n);
|
|
return *this;
|
|
}
|
|
|
|
bool try_append(const T* p, size_t n)
|
|
{
|
|
if (n)
|
|
return try_insert(m_size, p, n);
|
|
|
|
return true;
|
|
}
|
|
|
|
inline bool erase(size_t start, size_t n)
|
|
{
|
|
if (add_overflow_check(start, n))
|
|
{
|
|
assert(0);
|
|
return false;
|
|
}
|
|
|
|
assert((start + n) <= m_size);
|
|
|
|
if ((start + n) > m_size)
|
|
{
|
|
assert(0);
|
|
return false;
|
|
}
|
|
|
|
if (!n)
|
|
return true;
|
|
|
|
const size_t num_to_move = m_size - (start + n);
|
|
|
|
T* pDst = m_p + start;
|
|
|
|
const T* pSrc = m_p + start + n;
|
|
|
|
if (BASISU_IS_BITWISE_COPYABLE_OR_MOVABLE(T))
|
|
{
|
|
// This test is overly cautious.
|
|
if ((!BASISU_IS_BITWISE_COPYABLE(T)) || (BASISU_HAS_DESTRUCTOR(T)))
|
|
{
|
|
// Type has been marked explictly as bitwise movable, which means we can move them around but they may need to be destructed.
|
|
// First destroy the erased objects.
|
|
scalar_type<T>::destruct_array(pDst, n);
|
|
}
|
|
|
|
// Copy "down" the objects to preserve, filling in the empty slots.
|
|
|
|
#ifndef __EMSCRIPTEN__
|
|
#ifdef __GNUC__
|
|
#pragma GCC diagnostic push
|
|
#pragma GCC diagnostic ignored "-Wclass-memaccess"
|
|
#endif
|
|
#endif
|
|
|
|
memmove(pDst, pSrc, num_to_move * sizeof(T));
|
|
|
|
#ifndef __EMSCRIPTEN__
|
|
#ifdef __GNUC__
|
|
#pragma GCC diagnostic pop
|
|
#endif
|
|
#endif
|
|
}
|
|
else
|
|
{
|
|
// Type is not bitwise copyable or movable.
|
|
// Move them down one at a time by using the equals operator, and destroying anything that's left over at the end.
|
|
T* pDst_end = pDst + num_to_move;
|
|
|
|
while (pDst != pDst_end)
|
|
{
|
|
*pDst = std::move(*pSrc);
|
|
|
|
++pDst;
|
|
++pSrc;
|
|
}
|
|
|
|
scalar_type<T>::destruct_array(pDst_end, n);
|
|
}
|
|
|
|
m_size -= n;
|
|
|
|
return true;
|
|
}
|
|
|
|
inline bool erase_index(size_t index)
|
|
{
|
|
return erase(index, 1);
|
|
}
|
|
|
|
inline bool erase(T* p)
|
|
{
|
|
assert((p >= m_p) && (p < (m_p + m_size)));
|
|
|
|
if (p < m_p)
|
|
return false;
|
|
|
|
return erase_index(static_cast<size_t>(p - m_p));
|
|
}
|
|
|
|
inline bool erase(T* pFirst, T* pEnd)
|
|
{
|
|
assert(pFirst <= pEnd);
|
|
assert(pFirst >= begin() && pFirst <= end());
|
|
assert(pEnd >= begin() && pEnd <= end());
|
|
|
|
if ((pFirst < begin()) || (pEnd < pFirst))
|
|
{
|
|
assert(0);
|
|
return false;
|
|
}
|
|
|
|
uint64_t ofs = pFirst - begin();
|
|
if ((size_t)ofs != ofs)
|
|
{
|
|
assert(0);
|
|
return false;
|
|
}
|
|
|
|
uint64_t n = pEnd - pFirst;
|
|
if ((size_t)n != n)
|
|
{
|
|
assert(0);
|
|
return false;
|
|
}
|
|
|
|
return erase((size_t)ofs, (size_t)n);
|
|
}
|
|
|
|
bool erase_unordered(size_t index)
|
|
{
|
|
if (index >= m_size)
|
|
{
|
|
assert(0);
|
|
return false;
|
|
}
|
|
|
|
if ((index + 1) < m_size)
|
|
{
|
|
(*this)[index] = std::move(back());
|
|
}
|
|
|
|
pop_back();
|
|
return true;
|
|
}
|
|
|
|
inline bool operator== (const vector& rhs) const
|
|
{
|
|
if (m_size != rhs.m_size)
|
|
return false;
|
|
else if (m_size)
|
|
{
|
|
if (scalar_type<T>::cFlag)
|
|
return memcmp(m_p, rhs.m_p, sizeof(T) * m_size) == 0;
|
|
else
|
|
{
|
|
const T* pSrc = m_p;
|
|
const T* pDst = rhs.m_p;
|
|
for (size_t i = m_size; i; i--)
|
|
if (!(*pSrc++ == *pDst++))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
inline bool operator< (const vector& rhs) const
|
|
{
|
|
const size_t min_size = helpers::minimum(m_size, rhs.m_size);
|
|
|
|
const T* pSrc = m_p;
|
|
const T* pSrc_end = m_p + min_size;
|
|
const T* pDst = rhs.m_p;
|
|
|
|
while ((pSrc < pSrc_end) && (*pSrc == *pDst))
|
|
{
|
|
pSrc++;
|
|
pDst++;
|
|
}
|
|
|
|
if (pSrc < pSrc_end)
|
|
return *pSrc < *pDst;
|
|
|
|
return m_size < rhs.m_size;
|
|
}
|
|
|
|
inline void swap(vector& other)
|
|
{
|
|
std::swap(m_p, other.m_p);
|
|
std::swap(m_size, other.m_size);
|
|
std::swap(m_capacity, other.m_capacity);
|
|
}
|
|
|
|
inline void sort()
|
|
{
|
|
std::sort(begin(), end());
|
|
}
|
|
|
|
inline void unique()
|
|
{
|
|
if (!empty())
|
|
{
|
|
sort();
|
|
|
|
resize(std::unique(begin(), end()) - begin());
|
|
}
|
|
}
|
|
|
|
inline void reverse()
|
|
{
|
|
const size_t j = m_size >> 1;
|
|
|
|
for (size_t i = 0; i < j; i++)
|
|
std::swap(m_p[i], m_p[m_size - 1 - i]);
|
|
}
|
|
|
|
inline bool find(const T& key, size_t &idx) const
|
|
{
|
|
idx = 0;
|
|
|
|
const T* p = m_p;
|
|
const T* p_end = m_p + m_size;
|
|
|
|
size_t index = 0;
|
|
|
|
while (p != p_end)
|
|
{
|
|
if (key == *p)
|
|
{
|
|
idx = index;
|
|
return true;
|
|
}
|
|
|
|
p++;
|
|
index++;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
inline bool find_sorted(const T& key, size_t& idx) const
|
|
{
|
|
idx = 0;
|
|
|
|
if (!m_size)
|
|
return false;
|
|
|
|
// Inclusive range
|
|
size_t low = 0, high = m_size - 1;
|
|
|
|
while (low <= high)
|
|
{
|
|
size_t mid = (size_t)(((uint64_t)low + (uint64_t)high) >> 1);
|
|
|
|
const T* pTrial_key = m_p + mid;
|
|
|
|
// Sanity check comparison operator
|
|
assert(!((*pTrial_key < key) && (key < *pTrial_key)));
|
|
|
|
if (*pTrial_key < key)
|
|
{
|
|
if (add_overflow_check(mid, 1))
|
|
break;
|
|
|
|
low = mid + 1;
|
|
}
|
|
else if (key < *pTrial_key)
|
|
{
|
|
if (!mid)
|
|
break;
|
|
|
|
high = mid - 1;
|
|
}
|
|
else
|
|
{
|
|
idx = mid;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
inline size_t count_occurences(const T& key) const
|
|
{
|
|
size_t c = 0;
|
|
|
|
const T* p = m_p;
|
|
const T* p_end = m_p + m_size;
|
|
|
|
while (p != p_end)
|
|
{
|
|
if (key == *p)
|
|
c++;
|
|
|
|
p++;
|
|
}
|
|
|
|
return c;
|
|
}
|
|
|
|
inline void set_all(const T& o)
|
|
{
|
|
if ((sizeof(T) == 1) && (scalar_type<T>::cFlag))
|
|
{
|
|
#ifndef __EMSCRIPTEN__
|
|
#ifdef __GNUC__
|
|
#pragma GCC diagnostic push
|
|
#pragma GCC diagnostic ignored "-Wclass-memaccess"
|
|
#endif
|
|
#endif
|
|
memset(m_p, *reinterpret_cast<const uint8_t*>(&o), m_size);
|
|
|
|
#ifndef __EMSCRIPTEN__
|
|
#ifdef __GNUC__
|
|
#pragma GCC diagnostic pop
|
|
#endif
|
|
#endif
|
|
}
|
|
else
|
|
{
|
|
T* pDst = m_p;
|
|
T* pDst_end = pDst + m_size;
|
|
while (pDst != pDst_end)
|
|
*pDst++ = o;
|
|
}
|
|
}
|
|
|
|
// Caller assumes ownership of the heap block associated with the container. Container is cleared.
|
|
// Caller must use free() on the returned pointer.
|
|
inline void* assume_ownership()
|
|
{
|
|
T* p = m_p;
|
|
m_p = nullptr;
|
|
m_size = 0;
|
|
m_capacity = 0;
|
|
return p;
|
|
}
|
|
|
|
// Caller is granting ownership of the indicated heap block.
|
|
// Block must have size constructed elements, and have enough room for capacity elements.
|
|
// The block must have been allocated using malloc().
|
|
// Important: This method is used in Basis Universal. If you change how this container allocates memory, you'll need to change any users of this method.
|
|
inline bool grant_ownership(T* p, size_t size, size_t capacity)
|
|
{
|
|
// To prevent the caller from obviously shooting themselves in the foot.
|
|
if (((p + capacity) > m_p) && (p < (m_p + m_capacity)))
|
|
{
|
|
// Can grant ownership of a block inside the container itself!
|
|
assert(0);
|
|
return false;
|
|
}
|
|
|
|
if (size > capacity)
|
|
{
|
|
assert(0);
|
|
return false;
|
|
}
|
|
|
|
if (!p)
|
|
{
|
|
if (capacity)
|
|
{
|
|
assert(0);
|
|
return false;
|
|
}
|
|
}
|
|
else if (!capacity)
|
|
{
|
|
assert(0);
|
|
return false;
|
|
}
|
|
|
|
clear();
|
|
m_p = p;
|
|
m_size = size;
|
|
m_capacity = capacity;
|
|
return true;
|
|
}
|
|
|
|
readable_span<T> get_readable_span() const
|
|
{
|
|
return readable_span<T>(m_p, m_size);
|
|
}
|
|
|
|
writable_span<T> get_writable_span()
|
|
{
|
|
return writable_span<T>(m_p, m_size);
|
|
}
|
|
|
|
private:
|
|
T* m_p;
|
|
size_t m_size; // the number of constructed objects
|
|
size_t m_capacity; // the size of the allocation
|
|
|
|
template<typename Q> struct is_vector { enum { cFlag = false }; };
|
|
template<typename Q> struct is_vector< vector<Q> > { enum { cFlag = true }; };
|
|
|
|
static void object_mover(void* pDst_void, void* pSrc_void, size_t num)
|
|
{
|
|
T* pSrc = static_cast<T*>(pSrc_void);
|
|
T* const pSrc_end = pSrc + num;
|
|
T* pDst = static_cast<T*>(pDst_void);
|
|
|
|
while (pSrc != pSrc_end)
|
|
{
|
|
new ((void*)(pDst)) T(std::move(*pSrc));
|
|
scalar_type<T>::destruct(pSrc);
|
|
|
|
++pSrc;
|
|
++pDst;
|
|
}
|
|
}
|
|
|
|
inline bool increase_capacity(size_t min_new_capacity, bool grow_hint, bool nofail = false)
|
|
{
|
|
return reinterpret_cast<elemental_vector*>(this)->increase_capacity(
|
|
min_new_capacity, grow_hint, sizeof(T),
|
|
(BASISU_IS_BITWISE_COPYABLE_OR_MOVABLE(T) || (is_vector<T>::cFlag)) ? nullptr : object_mover, nofail);
|
|
}
|
|
};
|
|
|
|
template<typename T> struct bitwise_movable< vector<T> > { enum { cFlag = true }; };
|
|
|
|
// Hash map
|
|
// rg TODO 9/8/2024: I've upgraded this class to support 64-bit size_t, and it needs a lot more testing.
|
|
|
|
const uint32_t SIZE_T_BITS = sizeof(size_t) * 8U;
|
|
|
|
inline uint32_t safe_shift_left(uint32_t v, uint32_t l)
|
|
{
|
|
return (l < 32U) ? (v << l) : 0;
|
|
}
|
|
|
|
inline uint64_t safe_shift_left(uint64_t v, uint32_t l)
|
|
{
|
|
return (l < 64U) ? (v << l) : 0;
|
|
}
|
|
|
|
template <typename T>
|
|
struct hasher
|
|
{
|
|
inline size_t operator() (const T& key) const { return static_cast<size_t>(key); }
|
|
};
|
|
|
|
template <typename T>
|
|
struct equal_to
|
|
{
|
|
inline bool operator()(const T& a, const T& b) const { return a == b; }
|
|
};
|
|
|
|
// Important: The Hasher and Equals objects must be bitwise movable!
|
|
template<typename Key, typename Value = empty_type, typename Hasher = hasher<Key>, typename Equals = equal_to<Key> >
|
|
class hash_map
|
|
{
|
|
public:
|
|
class iterator;
|
|
class const_iterator;
|
|
|
|
private:
|
|
friend class iterator;
|
|
friend class const_iterator;
|
|
|
|
enum state
|
|
{
|
|
cStateInvalid = 0,
|
|
cStateValid = 1
|
|
};
|
|
|
|
enum
|
|
{
|
|
cMinHashSize = 4U
|
|
};
|
|
|
|
public:
|
|
typedef hash_map<Key, Value, Hasher, Equals> hash_map_type;
|
|
typedef std::pair<Key, Value> value_type;
|
|
typedef Key key_type;
|
|
typedef Value referent_type;
|
|
typedef Hasher hasher_type;
|
|
typedef Equals equals_type;
|
|
|
|
hash_map() :
|
|
m_num_valid(0),
|
|
m_grow_threshold(0),
|
|
m_hash_shift(SIZE_T_BITS)
|
|
{
|
|
static_assert((SIZE_T_BITS == 32) || (SIZE_T_BITS == 64), "SIZE_T_BITS must be 32 or 64");
|
|
}
|
|
|
|
hash_map(const hash_map& other) :
|
|
m_values(other.m_values),
|
|
m_num_valid(other.m_num_valid),
|
|
m_grow_threshold(other.m_grow_threshold),
|
|
m_hash_shift(other.m_hash_shift),
|
|
m_hasher(other.m_hasher),
|
|
m_equals(other.m_equals)
|
|
{
|
|
static_assert((SIZE_T_BITS == 32) || (SIZE_T_BITS == 64), "SIZE_T_BITS must be 32 or 64");
|
|
}
|
|
|
|
hash_map(hash_map&& other) :
|
|
m_values(std::move(other.m_values)),
|
|
m_num_valid(other.m_num_valid),
|
|
m_grow_threshold(other.m_grow_threshold),
|
|
m_hash_shift(other.m_hash_shift),
|
|
m_hasher(std::move(other.m_hasher)),
|
|
m_equals(std::move(other.m_equals))
|
|
{
|
|
static_assert((SIZE_T_BITS == 32) || (SIZE_T_BITS == 64), "SIZE_T_BITS must be 32 or 64");
|
|
|
|
other.m_hash_shift = SIZE_T_BITS;
|
|
other.m_num_valid = 0;
|
|
other.m_grow_threshold = 0;
|
|
}
|
|
|
|
hash_map& operator= (const hash_map& other)
|
|
{
|
|
if (this == &other)
|
|
return *this;
|
|
|
|
clear();
|
|
|
|
m_values = other.m_values;
|
|
m_hash_shift = other.m_hash_shift;
|
|
m_num_valid = other.m_num_valid;
|
|
m_grow_threshold = other.m_grow_threshold;
|
|
m_hasher = other.m_hasher;
|
|
m_equals = other.m_equals;
|
|
|
|
return *this;
|
|
}
|
|
|
|
hash_map& operator= (hash_map&& other)
|
|
{
|
|
if (this == &other)
|
|
return *this;
|
|
|
|
clear();
|
|
|
|
m_values = std::move(other.m_values);
|
|
m_hash_shift = other.m_hash_shift;
|
|
m_num_valid = other.m_num_valid;
|
|
m_grow_threshold = other.m_grow_threshold;
|
|
m_hasher = std::move(other.m_hasher);
|
|
m_equals = std::move(other.m_equals);
|
|
|
|
other.m_hash_shift = SIZE_T_BITS;
|
|
other.m_num_valid = 0;
|
|
other.m_grow_threshold = 0;
|
|
|
|
return *this;
|
|
}
|
|
|
|
inline ~hash_map()
|
|
{
|
|
clear();
|
|
}
|
|
|
|
inline const Equals& get_equals() const { return m_equals; }
|
|
inline Equals& get_equals() { return m_equals; }
|
|
inline void set_equals(const Equals& equals) { m_equals = equals; }
|
|
|
|
inline const Hasher& get_hasher() const { return m_hasher; }
|
|
inline Hasher& get_hasher() { return m_hasher; }
|
|
inline void set_hasher(const Hasher& hasher) { m_hasher = hasher; }
|
|
|
|
inline void clear()
|
|
{
|
|
if (m_values.empty())
|
|
return;
|
|
|
|
if (BASISU_HAS_DESTRUCTOR(Key) || BASISU_HAS_DESTRUCTOR(Value))
|
|
{
|
|
node* p = &get_node(0);
|
|
node* p_end = p + m_values.size();
|
|
|
|
size_t num_remaining = m_num_valid;
|
|
while (p != p_end)
|
|
{
|
|
if (p->state)
|
|
{
|
|
destruct_value_type(p);
|
|
num_remaining--;
|
|
if (!num_remaining)
|
|
break;
|
|
}
|
|
|
|
p++;
|
|
}
|
|
}
|
|
|
|
m_values.clear_no_destruction();
|
|
|
|
m_hash_shift = SIZE_T_BITS;
|
|
m_num_valid = 0;
|
|
m_grow_threshold = 0;
|
|
}
|
|
|
|
inline void reset()
|
|
{
|
|
if (!m_num_valid)
|
|
return;
|
|
|
|
if (BASISU_HAS_DESTRUCTOR(Key) || BASISU_HAS_DESTRUCTOR(Value))
|
|
{
|
|
node* p = &get_node(0);
|
|
node* p_end = p + m_values.size();
|
|
|
|
size_t num_remaining = m_num_valid;
|
|
while (p != p_end)
|
|
{
|
|
if (p->state)
|
|
{
|
|
destruct_value_type(p);
|
|
p->state = cStateInvalid;
|
|
|
|
num_remaining--;
|
|
if (!num_remaining)
|
|
break;
|
|
}
|
|
|
|
p++;
|
|
}
|
|
}
|
|
else if (sizeof(node) <= 16)
|
|
{
|
|
memset(&m_values[0], 0, m_values.size_in_bytes());
|
|
}
|
|
else
|
|
{
|
|
node* p = &get_node(0);
|
|
node* p_end = p + m_values.size();
|
|
|
|
size_t num_remaining = m_num_valid;
|
|
while (p != p_end)
|
|
{
|
|
if (p->state)
|
|
{
|
|
p->state = cStateInvalid;
|
|
|
|
num_remaining--;
|
|
if (!num_remaining)
|
|
break;
|
|
}
|
|
|
|
p++;
|
|
}
|
|
}
|
|
|
|
m_num_valid = 0;
|
|
}
|
|
|
|
inline size_t size()
|
|
{
|
|
return m_num_valid;
|
|
}
|
|
|
|
inline size_t get_table_size()
|
|
{
|
|
return m_values.size();
|
|
}
|
|
|
|
inline bool empty()
|
|
{
|
|
return !m_num_valid;
|
|
}
|
|
|
|
inline bool reserve(size_t new_capacity)
|
|
{
|
|
if (!new_capacity)
|
|
return true;
|
|
|
|
uint64_t new_hash_size = new_capacity;
|
|
|
|
new_hash_size = new_hash_size * 2ULL;
|
|
|
|
if (!helpers::is_power_of_2(new_hash_size))
|
|
new_hash_size = helpers::next_pow2(new_hash_size);
|
|
|
|
new_hash_size = helpers::maximum<uint64_t>(cMinHashSize, new_hash_size);
|
|
|
|
if (!can_fit_into_size_t(new_hash_size))
|
|
{
|
|
assert(0);
|
|
return false;
|
|
}
|
|
|
|
assert(new_hash_size >= new_capacity);
|
|
|
|
if (new_hash_size <= m_values.size())
|
|
return true;
|
|
|
|
return rehash((size_t)new_hash_size);
|
|
}
|
|
|
|
class iterator
|
|
{
|
|
friend class hash_map<Key, Value, Hasher, Equals>;
|
|
friend class hash_map<Key, Value, Hasher, Equals>::const_iterator;
|
|
|
|
public:
|
|
inline iterator() : m_pTable(nullptr), m_index(0) { }
|
|
inline iterator(hash_map_type& table, size_t index) : m_pTable(&table), m_index(index) { }
|
|
inline iterator(const iterator& other) : m_pTable(other.m_pTable), m_index(other.m_index) { }
|
|
|
|
inline iterator& operator= (const iterator& other)
|
|
{
|
|
m_pTable = other.m_pTable;
|
|
m_index = other.m_index;
|
|
return *this;
|
|
}
|
|
|
|
// post-increment
|
|
inline iterator operator++(int)
|
|
{
|
|
iterator result(*this);
|
|
++*this;
|
|
return result;
|
|
}
|
|
|
|
// pre-increment
|
|
inline iterator& operator++()
|
|
{
|
|
probe();
|
|
return *this;
|
|
}
|
|
|
|
inline value_type& operator*() const { return *get_cur(); }
|
|
inline value_type* operator->() const { return get_cur(); }
|
|
|
|
inline bool operator == (const iterator& b) const { return (m_pTable == b.m_pTable) && (m_index == b.m_index); }
|
|
inline bool operator != (const iterator& b) const { return !(*this == b); }
|
|
inline bool operator == (const const_iterator& b) const { return (m_pTable == b.m_pTable) && (m_index == b.m_index); }
|
|
inline bool operator != (const const_iterator& b) const { return !(*this == b); }
|
|
|
|
private:
|
|
hash_map_type* m_pTable;
|
|
size_t m_index;
|
|
|
|
inline value_type* get_cur() const
|
|
{
|
|
assert(m_pTable && (m_index < m_pTable->m_values.size()));
|
|
assert(m_pTable->get_node_state(m_index) == cStateValid);
|
|
|
|
return &m_pTable->get_node(m_index);
|
|
}
|
|
|
|
inline void probe()
|
|
{
|
|
assert(m_pTable);
|
|
m_index = m_pTable->find_next(m_index);
|
|
}
|
|
};
|
|
|
|
class const_iterator
|
|
{
|
|
friend class hash_map<Key, Value, Hasher, Equals>;
|
|
friend class hash_map<Key, Value, Hasher, Equals>::iterator;
|
|
|
|
public:
|
|
inline const_iterator() : m_pTable(nullptr), m_index(0) { }
|
|
inline const_iterator(const hash_map_type& table, size_t index) : m_pTable(&table), m_index(index) { }
|
|
inline const_iterator(const iterator& other) : m_pTable(other.m_pTable), m_index(other.m_index) { }
|
|
inline const_iterator(const const_iterator& other) : m_pTable(other.m_pTable), m_index(other.m_index) { }
|
|
|
|
inline const_iterator& operator= (const const_iterator& other)
|
|
{
|
|
m_pTable = other.m_pTable;
|
|
m_index = other.m_index;
|
|
return *this;
|
|
}
|
|
|
|
inline const_iterator& operator= (const iterator& other)
|
|
{
|
|
m_pTable = other.m_pTable;
|
|
m_index = other.m_index;
|
|
return *this;
|
|
}
|
|
|
|
// post-increment
|
|
inline const_iterator operator++(int)
|
|
{
|
|
const_iterator result(*this);
|
|
++*this;
|
|
return result;
|
|
}
|
|
|
|
// pre-increment
|
|
inline const_iterator& operator++()
|
|
{
|
|
probe();
|
|
return *this;
|
|
}
|
|
|
|
inline const value_type& operator*() const { return *get_cur(); }
|
|
inline const value_type* operator->() const { return get_cur(); }
|
|
|
|
inline bool operator == (const const_iterator& b) const { return (m_pTable == b.m_pTable) && (m_index == b.m_index); }
|
|
inline bool operator != (const const_iterator& b) const { return !(*this == b); }
|
|
inline bool operator == (const iterator& b) const { return (m_pTable == b.m_pTable) && (m_index == b.m_index); }
|
|
inline bool operator != (const iterator& b) const { return !(*this == b); }
|
|
|
|
private:
|
|
const hash_map_type* m_pTable;
|
|
size_t m_index;
|
|
|
|
inline const value_type* get_cur() const
|
|
{
|
|
assert(m_pTable && (m_index < m_pTable->m_values.size()));
|
|
assert(m_pTable->get_node_state(m_index) == cStateValid);
|
|
|
|
return &m_pTable->get_node(m_index);
|
|
}
|
|
|
|
inline void probe()
|
|
{
|
|
assert(m_pTable);
|
|
m_index = m_pTable->find_next(m_index);
|
|
}
|
|
};
|
|
|
|
inline const_iterator begin() const
|
|
{
|
|
if (!m_num_valid)
|
|
return end();
|
|
|
|
return const_iterator(*this, find_next(std::numeric_limits<size_t>::max()));
|
|
}
|
|
|
|
inline const_iterator end() const
|
|
{
|
|
return const_iterator(*this, m_values.size());
|
|
}
|
|
|
|
inline iterator begin()
|
|
{
|
|
if (!m_num_valid)
|
|
return end();
|
|
|
|
return iterator(*this, find_next(std::numeric_limits<size_t>::max()));
|
|
}
|
|
|
|
inline iterator end()
|
|
{
|
|
return iterator(*this, m_values.size());
|
|
}
|
|
|
|
// insert_result.first will always point to inserted key/value (or the already existing key/value).
|
|
// insert_result.second will be true if a new key/value was inserted, or false if the key already existed (in which case first will point to the already existing value).
|
|
typedef std::pair<iterator, bool> insert_result;
|
|
|
|
inline insert_result insert(const Key& k, const Value& v = Value())
|
|
{
|
|
insert_result result;
|
|
if (!insert_no_grow(result, k, v))
|
|
{
|
|
if (!try_grow())
|
|
container_abort("hash_map::try_grow() failed");
|
|
|
|
// This must succeed.
|
|
if (!insert_no_grow(result, k, v))
|
|
container_abort("hash_map::insert() failed");
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
inline bool try_insert(insert_result& result, const Key& k, const Value& v = Value())
|
|
{
|
|
if (!insert_no_grow(result, k, v))
|
|
{
|
|
if (!try_grow())
|
|
return false;
|
|
|
|
if (!insert_no_grow(result, k, v))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
inline insert_result insert(Key&& k, Value&& v = Value())
|
|
{
|
|
insert_result result;
|
|
if (!insert_no_grow_move(result, std::move(k), std::move(v)))
|
|
{
|
|
if (!try_grow())
|
|
container_abort("hash_map::try_grow() failed");
|
|
|
|
// This must succeed.
|
|
if (!insert_no_grow_move(result, std::move(k), std::move(v)))
|
|
container_abort("hash_map::insert() failed");
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
inline bool try_insert(insert_result& result, Key&& k, Value&& v = Value())
|
|
{
|
|
if (!insert_no_grow_move(result, std::move(k), std::move(v)))
|
|
{
|
|
if (!try_grow())
|
|
return false;
|
|
|
|
if (!insert_no_grow_move(result, std::move(k), std::move(v)))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
inline insert_result insert(const value_type& v)
|
|
{
|
|
return insert(v.first, v.second);
|
|
}
|
|
|
|
inline bool try_insert(insert_result& result, const value_type& v)
|
|
{
|
|
return try_insert(result, v.first, v.second);
|
|
}
|
|
|
|
inline insert_result insert(value_type&& v)
|
|
{
|
|
return insert(std::move(v.first), std::move(v.second));
|
|
}
|
|
|
|
inline bool try_insert(insert_result& result, value_type&& v)
|
|
{
|
|
return try_insert(result, std::move(v.first), std::move(v.second));
|
|
}
|
|
|
|
inline const_iterator find(const Key& k) const
|
|
{
|
|
return const_iterator(*this, find_index(k));
|
|
}
|
|
|
|
inline iterator find(const Key& k)
|
|
{
|
|
return iterator(*this, find_index(k));
|
|
}
|
|
|
|
inline bool contains(const Key& k) const
|
|
{
|
|
const size_t idx = find_index(k);
|
|
return idx != m_values.size();
|
|
}
|
|
|
|
inline bool erase(const Key& k)
|
|
{
|
|
size_t i = find_index(k);
|
|
|
|
if (i >= m_values.size())
|
|
return false;
|
|
|
|
node* pDst = &get_node(i);
|
|
destruct_value_type(pDst);
|
|
pDst->state = cStateInvalid;
|
|
|
|
m_num_valid--;
|
|
|
|
for (; ; )
|
|
{
|
|
size_t r, j = i;
|
|
|
|
node* pSrc = pDst;
|
|
|
|
do
|
|
{
|
|
if (!i)
|
|
{
|
|
i = m_values.size() - 1;
|
|
pSrc = &get_node(i);
|
|
}
|
|
else
|
|
{
|
|
i--;
|
|
pSrc--;
|
|
}
|
|
|
|
if (!pSrc->state)
|
|
return true;
|
|
|
|
r = hash_key(pSrc->first);
|
|
|
|
} while ((i <= r && r < j) || (r < j && j < i) || (j < i && i <= r));
|
|
|
|
move_node(pDst, pSrc);
|
|
|
|
pDst = pSrc;
|
|
}
|
|
}
|
|
|
|
inline void swap(hash_map_type& other)
|
|
{
|
|
m_values.swap(other.m_values);
|
|
std::swap(m_hash_shift, other.m_hash_shift);
|
|
std::swap(m_num_valid, other.m_num_valid);
|
|
std::swap(m_grow_threshold, other.m_grow_threshold);
|
|
std::swap(m_hasher, other.m_hasher);
|
|
std::swap(m_equals, other.m_equals);
|
|
}
|
|
|
|
private:
|
|
struct node : public value_type
|
|
{
|
|
uint8_t state;
|
|
};
|
|
|
|
static inline void construct_value_type(value_type* pDst, const Key& k, const Value& v)
|
|
{
|
|
if (BASISU_IS_BITWISE_COPYABLE(Key))
|
|
memcpy(&pDst->first, &k, sizeof(Key));
|
|
else
|
|
scalar_type<Key>::construct(&pDst->first, k);
|
|
|
|
if (BASISU_IS_BITWISE_COPYABLE(Value))
|
|
memcpy(&pDst->second, &v, sizeof(Value));
|
|
else
|
|
scalar_type<Value>::construct(&pDst->second, v);
|
|
}
|
|
|
|
static inline void construct_value_type(value_type* pDst, const value_type* pSrc)
|
|
{
|
|
if ((BASISU_IS_BITWISE_COPYABLE(Key)) && (BASISU_IS_BITWISE_COPYABLE(Value)))
|
|
{
|
|
memcpy(pDst, pSrc, sizeof(value_type));
|
|
}
|
|
else
|
|
{
|
|
if (BASISU_IS_BITWISE_COPYABLE(Key))
|
|
memcpy(&pDst->first, &pSrc->first, sizeof(Key));
|
|
else
|
|
scalar_type<Key>::construct(&pDst->first, pSrc->first);
|
|
|
|
if (BASISU_IS_BITWISE_COPYABLE(Value))
|
|
memcpy(&pDst->second, &pSrc->second, sizeof(Value));
|
|
else
|
|
scalar_type<Value>::construct(&pDst->second, pSrc->second);
|
|
}
|
|
}
|
|
|
|
static inline void destruct_value_type(value_type* p)
|
|
{
|
|
scalar_type<Key>::destruct(&p->first);
|
|
scalar_type<Value>::destruct(&p->second);
|
|
}
|
|
|
|
// Moves nodes *pSrc to *pDst efficiently from one hashmap to another.
|
|
// pDst should NOT be constructed on entry.
|
|
static inline void move_node(node* pDst, node* pSrc, bool update_src_state = true)
|
|
{
|
|
assert(!pDst->state);
|
|
|
|
if (BASISU_IS_BITWISE_COPYABLE_OR_MOVABLE(Key) && BASISU_IS_BITWISE_COPYABLE_OR_MOVABLE(Value))
|
|
{
|
|
memcpy(pDst, pSrc, sizeof(node));
|
|
|
|
assert(pDst->state == cStateValid);
|
|
}
|
|
else
|
|
{
|
|
if (BASISU_IS_BITWISE_COPYABLE_OR_MOVABLE(Key))
|
|
memcpy(&pDst->first, &pSrc->first, sizeof(Key));
|
|
else
|
|
{
|
|
new ((void*)&pDst->first) Key(std::move(pSrc->first));
|
|
scalar_type<Key>::destruct(&pSrc->first);
|
|
}
|
|
|
|
if (BASISU_IS_BITWISE_COPYABLE_OR_MOVABLE(Value))
|
|
memcpy(&pDst->second, &pSrc->second, sizeof(Value));
|
|
else
|
|
{
|
|
new ((void*)&pDst->second) Value(std::move(pSrc->second));
|
|
scalar_type<Value>::destruct(&pSrc->second);
|
|
}
|
|
|
|
pDst->state = cStateValid;
|
|
}
|
|
|
|
if (update_src_state)
|
|
pSrc->state = cStateInvalid;
|
|
}
|
|
|
|
struct raw_node
|
|
{
|
|
inline raw_node()
|
|
{
|
|
node* p = reinterpret_cast<node*>(this);
|
|
p->state = cStateInvalid;
|
|
}
|
|
|
|
// In practice, this should never be called (right?). We manage destruction ourselves.
|
|
inline ~raw_node()
|
|
{
|
|
node* p = reinterpret_cast<node*>(this);
|
|
if (p->state)
|
|
hash_map_type::destruct_value_type(p);
|
|
}
|
|
|
|
inline raw_node(const raw_node& other)
|
|
{
|
|
node* pDst = reinterpret_cast<node*>(this);
|
|
const node* pSrc = reinterpret_cast<const node*>(&other);
|
|
|
|
if (pSrc->state)
|
|
{
|
|
hash_map_type::construct_value_type(pDst, pSrc);
|
|
pDst->state = cStateValid;
|
|
}
|
|
else
|
|
pDst->state = cStateInvalid;
|
|
}
|
|
|
|
inline raw_node& operator= (const raw_node& rhs)
|
|
{
|
|
if (this == &rhs)
|
|
return *this;
|
|
|
|
node* pDst = reinterpret_cast<node*>(this);
|
|
const node* pSrc = reinterpret_cast<const node*>(&rhs);
|
|
|
|
if (pSrc->state)
|
|
{
|
|
if (pDst->state)
|
|
{
|
|
pDst->first = pSrc->first;
|
|
pDst->second = pSrc->second;
|
|
}
|
|
else
|
|
{
|
|
hash_map_type::construct_value_type(pDst, pSrc);
|
|
pDst->state = cStateValid;
|
|
}
|
|
}
|
|
else if (pDst->state)
|
|
{
|
|
hash_map_type::destruct_value_type(pDst);
|
|
pDst->state = cStateInvalid;
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
uint8_t m_bits[sizeof(node)];
|
|
};
|
|
|
|
typedef basisu::vector<raw_node> node_vector;
|
|
|
|
node_vector m_values;
|
|
|
|
size_t m_num_valid;
|
|
size_t m_grow_threshold;
|
|
|
|
uint32_t m_hash_shift;
|
|
|
|
Hasher m_hasher;
|
|
Equals m_equals;
|
|
|
|
inline size_t hash_key(const Key& k) const
|
|
{
|
|
assert((safe_shift_left(static_cast<uint64_t>(1), (SIZE_T_BITS - m_hash_shift))) == m_values.size());
|
|
|
|
// Fibonacci hashing
|
|
if (SIZE_T_BITS == 32)
|
|
{
|
|
assert(m_hash_shift != 32);
|
|
|
|
uint32_t hash = static_cast<uint32_t>(m_hasher(k));
|
|
hash = (2654435769U * hash) >> m_hash_shift;
|
|
|
|
assert(hash < m_values.size());
|
|
return (size_t)hash;
|
|
}
|
|
else
|
|
{
|
|
assert(m_hash_shift != 64);
|
|
|
|
uint64_t hash = static_cast<uint64_t>(m_hasher(k));
|
|
hash = (0x9E3779B97F4A7C15ULL * hash) >> m_hash_shift;
|
|
|
|
assert(hash < m_values.size());
|
|
return (size_t)hash;
|
|
}
|
|
}
|
|
|
|
inline const node& get_node(size_t index) const
|
|
{
|
|
return *reinterpret_cast<const node*>(&m_values[index]);
|
|
}
|
|
|
|
inline node& get_node(size_t index)
|
|
{
|
|
return *reinterpret_cast<node*>(&m_values[index]);
|
|
}
|
|
|
|
inline state get_node_state(size_t index) const
|
|
{
|
|
return static_cast<state>(get_node(index).state);
|
|
}
|
|
|
|
inline void set_node_state(size_t index, bool valid)
|
|
{
|
|
get_node(index).state = valid;
|
|
}
|
|
|
|
inline bool try_grow()
|
|
{
|
|
uint64_t n = m_values.size() * 2ULL;
|
|
|
|
if (!helpers::is_power_of_2(n))
|
|
n = helpers::next_pow2(n);
|
|
|
|
if (!can_fit_into_size_t(n))
|
|
{
|
|
assert(0);
|
|
return false;
|
|
}
|
|
|
|
return rehash(helpers::maximum<size_t>(cMinHashSize, (size_t)n));
|
|
}
|
|
|
|
// new_hash_size must be a power of 2.
|
|
inline bool rehash(size_t new_hash_size)
|
|
{
|
|
if (!helpers::is_power_of_2((uint64_t)new_hash_size))
|
|
{
|
|
assert(0);
|
|
return false;
|
|
}
|
|
|
|
if (new_hash_size < m_num_valid)
|
|
{
|
|
assert(0);
|
|
return false;
|
|
}
|
|
|
|
if (new_hash_size == m_values.size())
|
|
return true;
|
|
|
|
hash_map new_map;
|
|
if (!new_map.m_values.try_resize(new_hash_size))
|
|
return false;
|
|
|
|
new_map.m_hash_shift = SIZE_T_BITS - helpers::floor_log2i((uint64_t)new_hash_size);
|
|
assert(new_hash_size == safe_shift_left(static_cast<uint64_t>(1), SIZE_T_BITS - new_map.m_hash_shift));
|
|
|
|
new_map.m_grow_threshold = std::numeric_limits<size_t>::max();
|
|
|
|
node* pNode = reinterpret_cast<node*>(m_values.begin());
|
|
node* pNode_end = pNode + m_values.size();
|
|
|
|
while (pNode != pNode_end)
|
|
{
|
|
if (pNode->state)
|
|
{
|
|
new_map.move_into(pNode);
|
|
|
|
if (new_map.m_num_valid == m_num_valid)
|
|
break;
|
|
}
|
|
|
|
pNode++;
|
|
}
|
|
|
|
new_map.m_grow_threshold = new_hash_size >> 1U;
|
|
if (new_hash_size & 1)
|
|
new_map.m_grow_threshold++;
|
|
|
|
m_values.clear_no_destruction();
|
|
m_hash_shift = SIZE_T_BITS;
|
|
|
|
swap(new_map);
|
|
|
|
return true;
|
|
}
|
|
|
|
inline size_t find_next(size_t index) const
|
|
{
|
|
index++;
|
|
|
|
if (index >= m_values.size())
|
|
return index;
|
|
|
|
const node* pNode = &get_node(index);
|
|
|
|
for (; ; )
|
|
{
|
|
if (pNode->state)
|
|
break;
|
|
|
|
if (++index >= m_values.size())
|
|
break;
|
|
|
|
pNode++;
|
|
}
|
|
|
|
return index;
|
|
}
|
|
|
|
inline size_t find_index(const Key& k) const
|
|
{
|
|
if (m_num_valid)
|
|
{
|
|
size_t index = hash_key(k);
|
|
const node* pNode = &get_node(index);
|
|
|
|
if (pNode->state)
|
|
{
|
|
if (m_equals(pNode->first, k))
|
|
return index;
|
|
|
|
const size_t orig_index = index;
|
|
|
|
for (; ; )
|
|
{
|
|
if (!index)
|
|
{
|
|
index = m_values.size() - 1;
|
|
pNode = &get_node(index);
|
|
}
|
|
else
|
|
{
|
|
index--;
|
|
pNode--;
|
|
}
|
|
|
|
if (index == orig_index)
|
|
break;
|
|
|
|
if (!pNode->state)
|
|
break;
|
|
|
|
if (m_equals(pNode->first, k))
|
|
return index;
|
|
}
|
|
}
|
|
}
|
|
|
|
return m_values.size();
|
|
}
|
|
|
|
inline bool insert_no_grow(insert_result& result, const Key& k, const Value& v)
|
|
{
|
|
if (!m_values.size())
|
|
return false;
|
|
|
|
size_t index = hash_key(k);
|
|
node* pNode = &get_node(index);
|
|
|
|
if (pNode->state)
|
|
{
|
|
if (m_equals(pNode->first, k))
|
|
{
|
|
result.first = iterator(*this, index);
|
|
result.second = false;
|
|
return true;
|
|
}
|
|
|
|
const size_t orig_index = index;
|
|
|
|
for (; ; )
|
|
{
|
|
if (!index)
|
|
{
|
|
index = m_values.size() - 1;
|
|
pNode = &get_node(index);
|
|
}
|
|
else
|
|
{
|
|
index--;
|
|
pNode--;
|
|
}
|
|
|
|
if (orig_index == index)
|
|
return false;
|
|
|
|
if (!pNode->state)
|
|
break;
|
|
|
|
if (m_equals(pNode->first, k))
|
|
{
|
|
result.first = iterator(*this, index);
|
|
result.second = false;
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (m_num_valid >= m_grow_threshold)
|
|
return false;
|
|
|
|
construct_value_type(pNode, k, v);
|
|
|
|
pNode->state = cStateValid;
|
|
|
|
m_num_valid++;
|
|
assert(m_num_valid <= m_values.size());
|
|
|
|
result.first = iterator(*this, index);
|
|
result.second = true;
|
|
|
|
return true;
|
|
}
|
|
|
|
// Move user supplied key/value into a node.
|
|
static inline void move_value_type(value_type* pDst, Key&& k, Value&& v)
|
|
{
|
|
// Not checking for is MOVABLE because the caller could later destruct k and/or v (what state do we set them to?)
|
|
if (BASISU_IS_BITWISE_COPYABLE(Key))
|
|
{
|
|
memcpy(&pDst->first, &k, sizeof(Key));
|
|
}
|
|
else
|
|
{
|
|
new ((void*)&pDst->first) Key(std::move(k));
|
|
// No destruction - user will do that (we don't own k).
|
|
}
|
|
|
|
if (BASISU_IS_BITWISE_COPYABLE(Value))
|
|
{
|
|
memcpy(&pDst->second, &v, sizeof(Value));
|
|
}
|
|
else
|
|
{
|
|
new ((void*)&pDst->second) Value(std::move(v));
|
|
// No destruction - user will do that (we don't own v).
|
|
}
|
|
}
|
|
|
|
// Insert user provided k/v, by moving, into the current hash table
|
|
inline bool insert_no_grow_move(insert_result& result, Key&& k, Value&& v)
|
|
{
|
|
if (!m_values.size())
|
|
return false;
|
|
|
|
size_t index = hash_key(k);
|
|
node* pNode = &get_node(index);
|
|
|
|
if (pNode->state)
|
|
{
|
|
if (m_equals(pNode->first, k))
|
|
{
|
|
result.first = iterator(*this, index);
|
|
result.second = false;
|
|
return true;
|
|
}
|
|
|
|
const size_t orig_index = index;
|
|
|
|
for (; ; )
|
|
{
|
|
if (!index)
|
|
{
|
|
index = m_values.size() - 1;
|
|
pNode = &get_node(index);
|
|
}
|
|
else
|
|
{
|
|
index--;
|
|
pNode--;
|
|
}
|
|
|
|
if (orig_index == index)
|
|
return false;
|
|
|
|
if (!pNode->state)
|
|
break;
|
|
|
|
if (m_equals(pNode->first, k))
|
|
{
|
|
result.first = iterator(*this, index);
|
|
result.second = false;
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (m_num_valid >= m_grow_threshold)
|
|
return false;
|
|
|
|
move_value_type(pNode, std::move(k), std::move(v));
|
|
|
|
pNode->state = cStateValid;
|
|
|
|
m_num_valid++;
|
|
assert(m_num_valid <= m_values.size());
|
|
|
|
result.first = iterator(*this, index);
|
|
result.second = true;
|
|
|
|
return true;
|
|
}
|
|
|
|
// Insert pNode by moving into the current hash table
|
|
inline void move_into(node* pNode)
|
|
{
|
|
size_t index = hash_key(pNode->first);
|
|
node* pDst_node = &get_node(index);
|
|
|
|
if (pDst_node->state)
|
|
{
|
|
const size_t orig_index = index;
|
|
|
|
for (; ; )
|
|
{
|
|
if (!index)
|
|
{
|
|
index = m_values.size() - 1;
|
|
pDst_node = &get_node(index);
|
|
}
|
|
else
|
|
{
|
|
index--;
|
|
pDst_node--;
|
|
}
|
|
|
|
if (index == orig_index)
|
|
{
|
|
assert(false);
|
|
return;
|
|
}
|
|
|
|
if (!pDst_node->state)
|
|
break;
|
|
}
|
|
}
|
|
|
|
// No need to update the source node's state (it's going away)
|
|
move_node(pDst_node, pNode, false);
|
|
|
|
m_num_valid++;
|
|
}
|
|
};
|
|
|
|
template<typename Key, typename Value, typename Hasher, typename Equals>
|
|
struct bitwise_movable< hash_map<Key, Value, Hasher, Equals> > { enum { cFlag = true }; };
|
|
|
|
#if BASISU_HASHMAP_TEST
|
|
extern void hash_map_test();
|
|
#endif
|
|
|
|
// String formatting
|
|
inline std::string string_format(const char* pFmt, ...)
|
|
{
|
|
char buf[2048];
|
|
|
|
va_list args;
|
|
va_start(args, pFmt);
|
|
#ifdef _WIN32
|
|
vsprintf_s(buf, sizeof(buf), pFmt, args);
|
|
#else
|
|
vsnprintf(buf, sizeof(buf), pFmt, args);
|
|
#endif
|
|
va_end(args);
|
|
|
|
return std::string(buf);
|
|
}
|
|
|
|
enum class variant_type
|
|
{
|
|
cInvalid,
|
|
cI32, cU32,
|
|
cI64, cU64,
|
|
cFlt, cDbl, cBool,
|
|
cStrPtr, cStdStr
|
|
};
|
|
|
|
struct fmt_variant
|
|
{
|
|
union
|
|
{
|
|
int32_t m_i32;
|
|
uint32_t m_u32;
|
|
int64_t m_i64;
|
|
uint64_t m_u64;
|
|
float m_flt;
|
|
double m_dbl;
|
|
bool m_bool;
|
|
const char* m_pStr;
|
|
};
|
|
|
|
std::string m_str;
|
|
|
|
variant_type m_type;
|
|
|
|
inline fmt_variant() :
|
|
m_u64(0),
|
|
m_type(variant_type::cInvalid)
|
|
{
|
|
}
|
|
|
|
inline fmt_variant(const fmt_variant& other) :
|
|
m_u64(other.m_u64),
|
|
m_str(other.m_str),
|
|
m_type(other.m_type)
|
|
{
|
|
}
|
|
|
|
inline fmt_variant(fmt_variant&& other) :
|
|
m_u64(other.m_u64),
|
|
m_str(std::move(other.m_str)),
|
|
m_type(other.m_type)
|
|
{
|
|
other.m_type = variant_type::cInvalid;
|
|
other.m_u64 = 0;
|
|
}
|
|
|
|
inline fmt_variant& operator= (fmt_variant&& other)
|
|
{
|
|
if (this == &other)
|
|
return *this;
|
|
|
|
m_type = other.m_type;
|
|
m_u64 = other.m_u64;
|
|
m_str = std::move(other.m_str);
|
|
|
|
other.m_type = variant_type::cInvalid;
|
|
other.m_u64 = 0;
|
|
|
|
return *this;
|
|
}
|
|
|
|
inline fmt_variant& operator= (const fmt_variant& rhs)
|
|
{
|
|
if (this == &rhs)
|
|
return *this;
|
|
|
|
m_u64 = rhs.m_u64;
|
|
m_type = rhs.m_type;
|
|
m_str = rhs.m_str;
|
|
|
|
return *this;
|
|
}
|
|
|
|
inline fmt_variant(int32_t v) : m_i32(v), m_type(variant_type::cI32) { }
|
|
inline fmt_variant(uint32_t v) : m_u32(v), m_type(variant_type::cU32) { }
|
|
inline fmt_variant(int64_t v) : m_i64(v), m_type(variant_type::cI64) { }
|
|
inline fmt_variant(uint64_t v) : m_u64(v), m_type(variant_type::cU64) { }
|
|
#ifdef _MSC_VER
|
|
inline fmt_variant(unsigned long v) : m_u64(v), m_type(variant_type::cU64) {}
|
|
inline fmt_variant(long v) : m_i64(v), m_type(variant_type::cI64) {}
|
|
#endif
|
|
inline fmt_variant(float v) : m_flt(v), m_type(variant_type::cFlt) { }
|
|
inline fmt_variant(double v) : m_dbl(v), m_type(variant_type::cDbl) { }
|
|
inline fmt_variant(const char* pStr) : m_pStr(pStr), m_type(variant_type::cStrPtr) { }
|
|
inline fmt_variant(const std::string& str) : m_u64(0), m_str(str), m_type(variant_type::cStdStr) { }
|
|
inline fmt_variant(bool val) : m_bool(val), m_type(variant_type::cBool) { }
|
|
|
|
bool to_string(std::string& res, std::string& fmt) const;
|
|
};
|
|
|
|
typedef basisu::vector<fmt_variant> fmt_variant_vec;
|
|
|
|
bool fmt_variants(std::string& res, const char* pFmt, const fmt_variant_vec& variants);
|
|
|
|
template <typename... Args>
|
|
inline bool fmt_string(std::string& res, const char* pFmt, Args&&... args)
|
|
{
|
|
return fmt_variants(res, pFmt, fmt_variant_vec{ fmt_variant(std::forward<Args>(args))... });
|
|
}
|
|
|
|
template <typename... Args>
|
|
inline std::string fmt_string(const char* pFmt, Args&&... args)
|
|
{
|
|
std::string res;
|
|
fmt_variants(res, pFmt, fmt_variant_vec{ fmt_variant(std::forward<Args>(args))... });
|
|
return res;
|
|
}
|
|
|
|
template <typename... Args>
|
|
inline int fmt_printf(const char* pFmt, Args&&... args)
|
|
{
|
|
std::string res;
|
|
if (!fmt_variants(res, pFmt, fmt_variant_vec{ fmt_variant(std::forward<Args>(args))... }))
|
|
return EOF;
|
|
|
|
return fputs(res.c_str(), stdout);
|
|
}
|
|
|
|
template <typename... Args>
|
|
inline int fmt_fprintf(FILE* pFile, const char* pFmt, Args&&... args)
|
|
{
|
|
std::string res;
|
|
if (!fmt_variants(res, pFmt, fmt_variant_vec{ fmt_variant(std::forward<Args>(args))... }))
|
|
return EOF;
|
|
|
|
return fputs(res.c_str(), pFile);
|
|
}
|
|
|
|
// fixed_array - zero initialized by default, operator[] is always bounds checked.
|
|
template <std::size_t N, typename T>
|
|
class fixed_array
|
|
{
|
|
static_assert(N >= 1, "fixed_array size must be at least 1");
|
|
|
|
public:
|
|
using value_type = T;
|
|
using size_type = std::size_t;
|
|
using difference_type = std::ptrdiff_t;
|
|
using reference = T&;
|
|
using const_reference = const T&;
|
|
using pointer = T*;
|
|
using const_pointer = const T*;
|
|
using iterator = T*;
|
|
using const_iterator = const T*;
|
|
|
|
T m_data[N];
|
|
|
|
BASISU_FORCE_INLINE fixed_array()
|
|
{
|
|
initialize_array();
|
|
}
|
|
|
|
BASISU_FORCE_INLINE fixed_array(std::initializer_list<T> list)
|
|
{
|
|
assert(list.size() <= N);
|
|
|
|
std::size_t copy_size = std::min(list.size(), N);
|
|
std::copy_n(list.begin(), copy_size, m_data); // Copy up to min(list.size(), N)
|
|
|
|
if (list.size() < N)
|
|
{
|
|
// Initialize the rest of the array
|
|
std::fill(m_data + copy_size, m_data + N, T{});
|
|
}
|
|
}
|
|
|
|
BASISU_FORCE_INLINE T& operator[](std::size_t index)
|
|
{
|
|
if (index >= N)
|
|
container_abort("fixed_array: Index out of bounds.");
|
|
return m_data[index];
|
|
}
|
|
|
|
BASISU_FORCE_INLINE const T& operator[](std::size_t index) const
|
|
{
|
|
if (index >= N)
|
|
container_abort("fixed_array: Index out of bounds.");
|
|
return m_data[index];
|
|
}
|
|
|
|
BASISU_FORCE_INLINE T* begin() { return m_data; }
|
|
BASISU_FORCE_INLINE const T* begin() const { return m_data; }
|
|
|
|
BASISU_FORCE_INLINE T* end() { return m_data + N; }
|
|
BASISU_FORCE_INLINE const T* end() const { return m_data + N; }
|
|
|
|
BASISU_FORCE_INLINE const T* data() const { return m_data; }
|
|
BASISU_FORCE_INLINE T* data() { return m_data; }
|
|
|
|
BASISU_FORCE_INLINE const T& front() const { return m_data[0]; }
|
|
BASISU_FORCE_INLINE T& front() { return m_data[0]; }
|
|
|
|
BASISU_FORCE_INLINE const T& back() const { return m_data[N - 1]; }
|
|
BASISU_FORCE_INLINE T& back() { return m_data[N - 1]; }
|
|
|
|
BASISU_FORCE_INLINE constexpr std::size_t size() const { return N; }
|
|
|
|
BASISU_FORCE_INLINE void clear()
|
|
{
|
|
initialize_array(); // Reinitialize the array
|
|
}
|
|
|
|
BASISU_FORCE_INLINE void set_all(const T& value)
|
|
{
|
|
std::fill(m_data, m_data + N, value);
|
|
}
|
|
|
|
BASISU_FORCE_INLINE readable_span<T> get_readable_span() const
|
|
{
|
|
return readable_span<T>(m_data, N);
|
|
}
|
|
|
|
BASISU_FORCE_INLINE writable_span<T> get_writable_span()
|
|
{
|
|
return writable_span<T>(m_data, N);
|
|
}
|
|
|
|
private:
|
|
BASISU_FORCE_INLINE void initialize_array()
|
|
{
|
|
if constexpr (std::is_integral<T>::value || std::is_floating_point<T>::value)
|
|
memset(m_data, 0, sizeof(m_data));
|
|
else
|
|
std::fill(m_data, m_data + N, T{});
|
|
}
|
|
|
|
BASISU_FORCE_INLINE T& access_element(std::size_t index)
|
|
{
|
|
if (index >= N)
|
|
container_abort("fixed_array: Index out of bounds.");
|
|
return m_data[index];
|
|
}
|
|
|
|
BASISU_FORCE_INLINE const T& access_element(std::size_t index) const
|
|
{
|
|
if (index >= N)
|
|
container_abort("fixed_array: Index out of bounds.");
|
|
return m_data[index];
|
|
}
|
|
};
|
|
|
|
// 2D array
|
|
|
|
template<typename T>
|
|
class vector2D
|
|
{
|
|
typedef basisu::vector<T> vec_type;
|
|
|
|
uint32_t m_width, m_height;
|
|
vec_type m_values;
|
|
|
|
public:
|
|
vector2D() :
|
|
m_width(0),
|
|
m_height(0)
|
|
{
|
|
}
|
|
|
|
vector2D(uint32_t w, uint32_t h) :
|
|
m_width(0),
|
|
m_height(0)
|
|
{
|
|
resize(w, h);
|
|
}
|
|
|
|
vector2D(const vector2D& other)
|
|
{
|
|
*this = other;
|
|
}
|
|
|
|
vector2D(vector2D&& other) :
|
|
m_width(0),
|
|
m_height(0)
|
|
{
|
|
*this = std::move(other);
|
|
}
|
|
|
|
vector2D& operator= (const vector2D& other)
|
|
{
|
|
if (this != &other)
|
|
{
|
|
m_width = other.m_width;
|
|
m_height = other.m_height;
|
|
m_values = other.m_values;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
vector2D& operator= (vector2D&& other)
|
|
{
|
|
if (this != &other)
|
|
{
|
|
m_width = other.m_width;
|
|
m_height = other.m_height;
|
|
m_values = std::move(other.m_values);
|
|
|
|
other.m_width = 0;
|
|
other.m_height = 0;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
inline bool operator== (const vector2D& rhs) const
|
|
{
|
|
return (m_width == rhs.m_width) && (m_height == rhs.m_height) && (m_values == rhs.m_values);
|
|
}
|
|
|
|
inline size_t size_in_bytes() const { return m_values.size_in_bytes(); }
|
|
|
|
inline uint32_t get_width() const { return m_width; }
|
|
inline uint32_t get_height() const { return m_height; }
|
|
|
|
inline const T& operator() (uint32_t x, uint32_t y) const { assert(x < m_width && y < m_height); return m_values[x + y * m_width]; }
|
|
inline T& operator() (uint32_t x, uint32_t y) { assert(x < m_width && y < m_height); return m_values[x + y * m_width]; }
|
|
|
|
inline size_t size() const { return m_values.size(); }
|
|
|
|
inline const T& operator[] (uint32_t i) const { return m_values[i]; }
|
|
inline T& operator[] (uint32_t i) { return m_values[i]; }
|
|
|
|
inline const T& at_clamped(int x, int y) const { return (*this)(clamp<int>(x, 0, m_width - 1), clamp<int>(y, 0, m_height - 1)); }
|
|
inline T& at_clamped(int x, int y) { return (*this)(clamp<int>(x, 0, m_width - 1), clamp<int>(y, 0, m_height - 1)); }
|
|
|
|
void clear()
|
|
{
|
|
m_width = 0;
|
|
m_height = 0;
|
|
m_values.clear();
|
|
}
|
|
|
|
void set_all(const T& val)
|
|
{
|
|
vector_set_all(m_values, val);
|
|
}
|
|
|
|
inline const T* get_ptr() const { return m_values.data(); }
|
|
inline T* get_ptr() { return m_values.data(); }
|
|
|
|
vector2D& resize(uint32_t new_width, uint32_t new_height)
|
|
{
|
|
if ((m_width == new_width) && (m_height == new_height))
|
|
return *this;
|
|
|
|
const uint64_t total_vals = (uint64_t)new_width * new_height;
|
|
|
|
if (!can_fit_into_size_t(total_vals))
|
|
{
|
|
// What can we do?
|
|
assert(0);
|
|
return *this;
|
|
}
|
|
|
|
vec_type oldVals((size_t)total_vals);
|
|
oldVals.swap(m_values);
|
|
|
|
const uint32_t w = minimum(m_width, new_width);
|
|
const uint32_t h = minimum(m_height, new_height);
|
|
|
|
if ((w) && (h))
|
|
{
|
|
for (uint32_t y = 0; y < h; y++)
|
|
for (uint32_t x = 0; x < w; x++)
|
|
m_values[x + y * new_width] = oldVals[x + y * m_width];
|
|
}
|
|
|
|
m_width = new_width;
|
|
m_height = new_height;
|
|
|
|
return *this;
|
|
}
|
|
|
|
bool try_resize(uint32_t new_width, uint32_t new_height)
|
|
{
|
|
if ((m_width == new_width) && (m_height == new_height))
|
|
return true;
|
|
|
|
const uint64_t total_vals = (uint64_t)new_width * new_height;
|
|
|
|
if (!can_fit_into_size_t(total_vals))
|
|
{
|
|
// What can we do?
|
|
assert(0);
|
|
return false;
|
|
}
|
|
|
|
vec_type oldVals;
|
|
if (!oldVals.try_resize((size_t)total_vals))
|
|
return false;
|
|
|
|
oldVals.swap(m_values);
|
|
|
|
const uint32_t w = minimum(m_width, new_width);
|
|
const uint32_t h = minimum(m_height, new_height);
|
|
|
|
if ((w) && (h))
|
|
{
|
|
for (uint32_t y = 0; y < h; y++)
|
|
for (uint32_t x = 0; x < w; x++)
|
|
m_values[x + y * new_width] = oldVals[x + y * m_width];
|
|
}
|
|
|
|
m_width = new_width;
|
|
m_height = new_height;
|
|
|
|
return true;
|
|
}
|
|
|
|
const vector2D& extract_block_clamped(T* pDst, uint32_t src_x, uint32_t src_y, uint32_t w, uint32_t h) const
|
|
{
|
|
// HACK HACK
|
|
if (((src_x + w) > m_width) || ((src_y + h) > m_height))
|
|
{
|
|
// Slower clamping case
|
|
for (uint32_t y = 0; y < h; y++)
|
|
for (uint32_t x = 0; x < w; x++)
|
|
*pDst++ = at_clamped(src_x + x, src_y + y);
|
|
}
|
|
else
|
|
{
|
|
const T* pSrc = &m_values[src_x + src_y * m_width];
|
|
|
|
for (uint32_t y = 0; y < h; y++)
|
|
{
|
|
memcpy(pDst, pSrc, w * sizeof(T));
|
|
pSrc += m_width;
|
|
pDst += w;
|
|
}
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
};
|
|
|
|
} // namespace basisu
|
|
|
|
namespace std
|
|
{
|
|
template<typename T>
|
|
inline void swap(basisu::vector<T>& a, basisu::vector<T>& b)
|
|
{
|
|
a.swap(b);
|
|
}
|
|
|
|
template<typename Key, typename Value, typename Hasher, typename Equals>
|
|
inline void swap(basisu::hash_map<Key, Value, Hasher, Equals>& a, basisu::hash_map<Key, Value, Hasher, Equals>& b)
|
|
{
|
|
a.swap(b);
|
|
}
|
|
|
|
} // namespace std
|