Files
noahbackus 9d30169a8d
Some checks failed
🔗 GHA / 📊 Static checks (push) Has been cancelled
🔗 GHA / 🤖 Android (push) Has been cancelled
🔗 GHA / 🍏 iOS (push) Has been cancelled
🔗 GHA / 🐧 Linux (push) Has been cancelled
🔗 GHA / 🍎 macOS (push) Has been cancelled
🔗 GHA / 🏁 Windows (push) Has been cancelled
🔗 GHA / 🌐 Web (push) Has been cancelled
initial commit, 4.5 stable
2025-09-16 20:46:46 -04:00

245 lines
10 KiB
C++

// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#pragma once
#include <Jolt/Core/Atomics.h>
JPH_NAMESPACE_BEGIN
// Forward declares
template <class T> class Ref;
template <class T> class RefConst;
/// Simple class to facilitate reference counting / releasing
/// Derive your class from RefTarget and you can reference it by using Ref<classname> or RefConst<classname>
///
/// Reference counting classes keep an integer which indicates how many references
/// to the object are active. Reference counting objects are derived from RefTarget
/// and staT & their life with a reference count of zero. They can then be assigned
/// to equivalents of pointers (Ref) which will increase the reference count immediately.
/// If the destructor of Ref is called or another object is assigned to the reference
/// counting pointer it will decrease the reference count of the object again. If this
/// reference count becomes zero, the object is destroyed.
///
/// This provides a very powerful mechanism to prevent memory leaks, but also gives
/// some responsibility to the programmer. The most notable point is that you cannot
/// have one object reference another and have the other reference the first one
/// back, because this way the reference count of both objects will never become
/// lower than 1, resulting in a memory leak. By carefully designing your classes
/// (and particularly identifying who owns who in the class hierarchy) you can avoid
/// these problems.
template <class T>
class RefTarget
{
public:
/// Constructor
inline RefTarget() = default;
inline RefTarget(const RefTarget &) { /* Do not copy refcount */ }
inline ~RefTarget() { JPH_IF_ENABLE_ASSERTS(uint32 value = mRefCount.load(memory_order_relaxed);) JPH_ASSERT(value == 0 || value == cEmbedded); } ///< assert no one is referencing us
/// Mark this class as embedded, this means the type can be used in a compound or constructed on the stack.
/// The Release function will never destruct the object, it is assumed the destructor will be called by whoever allocated
/// the object and at that point in time it is checked that no references are left to the structure.
inline void SetEmbedded() const { JPH_IF_ENABLE_ASSERTS(uint32 old = ) mRefCount.fetch_add(cEmbedded, memory_order_relaxed); JPH_ASSERT(old < cEmbedded); }
/// Assignment operator
inline RefTarget & operator = (const RefTarget &) { /* Don't copy refcount */ return *this; }
/// Get current refcount of this object
uint32 GetRefCount() const { return mRefCount.load(memory_order_relaxed); }
/// Add or release a reference to this object
inline void AddRef() const
{
// Adding a reference can use relaxed memory ordering
mRefCount.fetch_add(1, memory_order_relaxed);
}
inline void Release() const
{
#ifndef JPH_TSAN_ENABLED
// Releasing a reference must use release semantics...
if (mRefCount.fetch_sub(1, memory_order_release) == 1)
{
// ... so that we can use acquire to ensure that we see any updates from other threads that released a ref before deleting the object
atomic_thread_fence(memory_order_acquire);
delete static_cast<const T *>(this);
}
#else
// But under TSAN, we cannot use atomic_thread_fence, so we use an acq_rel operation unconditionally instead
if (mRefCount.fetch_sub(1, memory_order_acq_rel) == 1)
delete static_cast<const T *>(this);
#endif
}
/// INTERNAL HELPER FUNCTION USED BY SERIALIZATION
static int sInternalGetRefCountOffset() { return offsetof(T, mRefCount); }
protected:
static constexpr uint32 cEmbedded = 0x0ebedded; ///< A large value that gets added to the refcount to mark the object as embedded
mutable atomic<uint32> mRefCount = 0; ///< Current reference count
};
/// Pure virtual version of RefTarget
class JPH_EXPORT RefTargetVirtual
{
public:
/// Virtual destructor
virtual ~RefTargetVirtual() = default;
/// Virtual add reference
virtual void AddRef() = 0;
/// Virtual release reference
virtual void Release() = 0;
};
/// Class for automatic referencing, this is the equivalent of a pointer to type T
/// if you assign a value to this class it will increment the reference count by one
/// of this object, and if you assign something else it will decrease the reference
/// count of the first object again. If it reaches a reference count of zero it will
/// be deleted
template <class T>
class Ref
{
public:
/// Constructor
inline Ref() : mPtr(nullptr) { }
inline Ref(T *inRHS) : mPtr(inRHS) { AddRef(); }
inline Ref(const Ref<T> &inRHS) : mPtr(inRHS.mPtr) { AddRef(); }
inline Ref(Ref<T> &&inRHS) noexcept : mPtr(inRHS.mPtr) { inRHS.mPtr = nullptr; }
inline ~Ref() { Release(); }
/// Assignment operators
inline Ref<T> & operator = (T *inRHS) { if (mPtr != inRHS) { Release(); mPtr = inRHS; AddRef(); } return *this; }
inline Ref<T> & operator = (const Ref<T> &inRHS) { if (mPtr != inRHS.mPtr) { Release(); mPtr = inRHS.mPtr; AddRef(); } return *this; }
inline Ref<T> & operator = (Ref<T> &&inRHS) noexcept { if (mPtr != inRHS.mPtr) { Release(); mPtr = inRHS.mPtr; inRHS.mPtr = nullptr; } return *this; }
/// Casting operators
inline operator T *() const { return mPtr; }
/// Access like a normal pointer
inline T * operator -> () const { return mPtr; }
inline T & operator * () const { return *mPtr; }
/// Comparison
inline bool operator == (const T * inRHS) const { return mPtr == inRHS; }
inline bool operator == (const Ref<T> &inRHS) const { return mPtr == inRHS.mPtr; }
inline bool operator != (const T * inRHS) const { return mPtr != inRHS; }
inline bool operator != (const Ref<T> &inRHS) const { return mPtr != inRHS.mPtr; }
/// Get pointer
inline T * GetPtr() const { return mPtr; }
/// Get hash for this object
uint64 GetHash() const
{
return Hash<T *> { } (mPtr);
}
/// INTERNAL HELPER FUNCTION USED BY SERIALIZATION
void ** InternalGetPointer() { return reinterpret_cast<void **>(&mPtr); }
private:
template <class T2> friend class RefConst;
/// Use "variable = nullptr;" to release an object, do not call these functions
inline void AddRef() { if (mPtr != nullptr) mPtr->AddRef(); }
inline void Release() { if (mPtr != nullptr) mPtr->Release(); }
T * mPtr; ///< Pointer to object that we are reference counting
};
/// Class for automatic referencing, this is the equivalent of a CONST pointer to type T
/// if you assign a value to this class it will increment the reference count by one
/// of this object, and if you assign something else it will decrease the reference
/// count of the first object again. If it reaches a reference count of zero it will
/// be deleted
template <class T>
class RefConst
{
public:
/// Constructor
inline RefConst() : mPtr(nullptr) { }
inline RefConst(const T * inRHS) : mPtr(inRHS) { AddRef(); }
inline RefConst(const RefConst<T> &inRHS) : mPtr(inRHS.mPtr) { AddRef(); }
inline RefConst(RefConst<T> &&inRHS) noexcept : mPtr(inRHS.mPtr) { inRHS.mPtr = nullptr; }
inline RefConst(const Ref<T> &inRHS) : mPtr(inRHS.mPtr) { AddRef(); }
inline RefConst(Ref<T> &&inRHS) noexcept : mPtr(inRHS.mPtr) { inRHS.mPtr = nullptr; }
inline ~RefConst() { Release(); }
/// Assignment operators
inline RefConst<T> & operator = (const T * inRHS) { if (mPtr != inRHS) { Release(); mPtr = inRHS; AddRef(); } return *this; }
inline RefConst<T> & operator = (const RefConst<T> &inRHS) { if (mPtr != inRHS.mPtr) { Release(); mPtr = inRHS.mPtr; AddRef(); } return *this; }
inline RefConst<T> & operator = (RefConst<T> &&inRHS) noexcept { if (mPtr != inRHS.mPtr) { Release(); mPtr = inRHS.mPtr; inRHS.mPtr = nullptr; } return *this; }
inline RefConst<T> & operator = (const Ref<T> &inRHS) { if (mPtr != inRHS.mPtr) { Release(); mPtr = inRHS.mPtr; AddRef(); } return *this; }
inline RefConst<T> & operator = (Ref<T> &&inRHS) noexcept { if (mPtr != inRHS.mPtr) { Release(); mPtr = inRHS.mPtr; inRHS.mPtr = nullptr; } return *this; }
/// Casting operators
inline operator const T * () const { return mPtr; }
/// Access like a normal pointer
inline const T * operator -> () const { return mPtr; }
inline const T & operator * () const { return *mPtr; }
/// Comparison
inline bool operator == (const T * inRHS) const { return mPtr == inRHS; }
inline bool operator == (const RefConst<T> &inRHS) const { return mPtr == inRHS.mPtr; }
inline bool operator == (const Ref<T> &inRHS) const { return mPtr == inRHS.mPtr; }
inline bool operator != (const T * inRHS) const { return mPtr != inRHS; }
inline bool operator != (const RefConst<T> &inRHS) const { return mPtr != inRHS.mPtr; }
inline bool operator != (const Ref<T> &inRHS) const { return mPtr != inRHS.mPtr; }
/// Get pointer
inline const T * GetPtr() const { return mPtr; }
/// Get hash for this object
uint64 GetHash() const
{
return Hash<const T *> { } (mPtr);
}
/// INTERNAL HELPER FUNCTION USED BY SERIALIZATION
void ** InternalGetPointer() { return const_cast<void **>(reinterpret_cast<const void **>(&mPtr)); }
private:
/// Use "variable = nullptr;" to release an object, do not call these functions
inline void AddRef() { if (mPtr != nullptr) mPtr->AddRef(); }
inline void Release() { if (mPtr != nullptr) mPtr->Release(); }
const T * mPtr; ///< Pointer to object that we are reference counting
};
JPH_NAMESPACE_END
JPH_SUPPRESS_WARNING_PUSH
JPH_CLANG_SUPPRESS_WARNING("-Wc++98-compat")
namespace std
{
/// Declare std::hash for Ref
template <class T>
struct hash<JPH::Ref<T>>
{
size_t operator () (const JPH::Ref<T> &inRHS) const
{
return size_t(inRHS.GetHash());
}
};
/// Declare std::hash for RefConst
template <class T>
struct hash<JPH::RefConst<T>>
{
size_t operator () (const JPH::RefConst<T> &inRHS) const
{
return size_t(inRHS.GetHash());
}
};
}
JPH_SUPPRESS_WARNING_POP