Files
godot/core/templates/cowdata.h
noahbackus 9d30169a8d
Some checks failed
🔗 GHA / 📊 Static checks (push) Has been cancelled
🔗 GHA / 🤖 Android (push) Has been cancelled
🔗 GHA / 🍏 iOS (push) Has been cancelled
🔗 GHA / 🐧 Linux (push) Has been cancelled
🔗 GHA / 🍎 macOS (push) Has been cancelled
🔗 GHA / 🏁 Windows (push) Has been cancelled
🔗 GHA / 🌐 Web (push) Has been cancelled
initial commit, 4.5 stable
2025-09-16 20:46:46 -04:00

448 lines
14 KiB
C++

/**************************************************************************/
/* cowdata.h */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#pragma once
#include "core/error/error_macros.h"
#include "core/os/memory.h"
#include "core/templates/safe_refcount.h"
#include "core/templates/span.h"
#include <initializer_list>
#include <type_traits>
static_assert(std::is_trivially_destructible_v<std::atomic<uint64_t>>);
GODOT_GCC_WARNING_PUSH
GODOT_GCC_WARNING_IGNORE("-Wplacement-new") // Silence a false positive warning (see GH-52119).
GODOT_GCC_WARNING_IGNORE("-Wmaybe-uninitialized") // False positive raised when using constexpr.
template <typename T>
class CowData {
public:
typedef int64_t Size;
typedef uint64_t USize;
static constexpr USize MAX_INT = INT64_MAX;
private:
// Alignment: ↓ max_align_t ↓ USize ↓ max_align_t
// ┌────────────────────┬──┬─────────────┬──┬───────────...
// │ SafeNumeric<USize> │░░│ USize │░░│ T[]
// │ ref. count │░░│ data size │░░│ data
// └────────────────────┴──┴─────────────┴──┴───────────...
// Offset: ↑ REF_COUNT_OFFSET ↑ SIZE_OFFSET ↑ DATA_OFFSET
static constexpr size_t REF_COUNT_OFFSET = 0;
static constexpr size_t SIZE_OFFSET = ((REF_COUNT_OFFSET + sizeof(SafeNumeric<USize>)) % alignof(USize) == 0) ? (REF_COUNT_OFFSET + sizeof(SafeNumeric<USize>)) : ((REF_COUNT_OFFSET + sizeof(SafeNumeric<USize>)) + alignof(USize) - ((REF_COUNT_OFFSET + sizeof(SafeNumeric<USize>)) % alignof(USize)));
static constexpr size_t DATA_OFFSET = ((SIZE_OFFSET + sizeof(USize)) % alignof(max_align_t) == 0) ? (SIZE_OFFSET + sizeof(USize)) : ((SIZE_OFFSET + sizeof(USize)) + alignof(max_align_t) - ((SIZE_OFFSET + sizeof(USize)) % alignof(max_align_t)));
mutable T *_ptr = nullptr;
// internal helpers
static _FORCE_INLINE_ T *_get_data_ptr(uint8_t *p_ptr) {
return (T *)(p_ptr + DATA_OFFSET);
}
_FORCE_INLINE_ SafeNumeric<USize> *_get_refcount() const {
if (!_ptr) {
return nullptr;
}
return (SafeNumeric<USize> *)((uint8_t *)_ptr - DATA_OFFSET + REF_COUNT_OFFSET);
}
_FORCE_INLINE_ USize *_get_size() const {
if (!_ptr) {
return nullptr;
}
return (USize *)((uint8_t *)_ptr - DATA_OFFSET + SIZE_OFFSET);
}
_FORCE_INLINE_ static USize _get_alloc_size(USize p_elements) {
return next_power_of_2(p_elements * (USize)sizeof(T));
}
_FORCE_INLINE_ static bool _get_alloc_size_checked(USize p_elements, USize *out) {
if (unlikely(p_elements == 0)) {
*out = 0;
return true;
}
#if defined(__GNUC__) && defined(IS_32_BIT)
USize o;
USize p;
if (__builtin_mul_overflow(p_elements, sizeof(T), &o)) {
*out = 0;
return false;
}
*out = next_power_of_2(o);
if (__builtin_add_overflow(o, static_cast<USize>(32), &p)) {
return false; // No longer allocated here.
}
#else
// Speed is more important than correctness here, do the operations unchecked
// and hope for the best.
*out = _get_alloc_size(p_elements);
#endif
return *out;
}
// Decrements the reference count. Deallocates the backing buffer if needed.
// After this function, _ptr is guaranteed to be NULL.
void _unref();
void _ref(const CowData *p_from);
void _ref(const CowData &p_from);
// Ensures that the backing buffer is at least p_size wide, and that this CowData instance is
// the only reference to it. The buffer is populated with as many element copies from the old
// array as possible.
// It is the responsibility of the caller to populate newly allocated space up to p_size.
Error _fork_allocate(USize p_size);
Error _copy_on_write() { return _fork_allocate(size()); }
// Allocates a backing array of the given capacity. The reference count is initialized to 1.
// It is the responsibility of the caller to populate the array and the new size property.
Error _alloc(USize p_alloc_size);
// Re-allocates the backing array to the given capacity. The reference count is initialized to 1.
// It is the responsibility of the caller to populate the array and the new size property.
// The caller must also make sure there are no other references to the data, as pointers may
// be invalidated.
Error _realloc(USize p_alloc_size);
public:
void operator=(const CowData<T> &p_from) { _ref(p_from); }
void operator=(CowData<T> &&p_from) {
if (_ptr == p_from._ptr) {
return;
}
_unref();
_ptr = p_from._ptr;
p_from._ptr = nullptr;
}
_FORCE_INLINE_ T *ptrw() {
_copy_on_write();
return _ptr;
}
_FORCE_INLINE_ const T *ptr() const {
return _ptr;
}
_FORCE_INLINE_ Size size() const {
USize *size = (USize *)_get_size();
if (size) {
return *size;
} else {
return 0;
}
}
_FORCE_INLINE_ void clear() { _unref(); }
_FORCE_INLINE_ bool is_empty() const { return _ptr == nullptr; }
_FORCE_INLINE_ void set(Size p_index, const T &p_elem) {
ERR_FAIL_INDEX(p_index, size());
_copy_on_write();
_ptr[p_index] = p_elem;
}
_FORCE_INLINE_ T &get_m(Size p_index) {
CRASH_BAD_INDEX(p_index, size());
_copy_on_write();
return _ptr[p_index];
}
_FORCE_INLINE_ const T &get(Size p_index) const {
CRASH_BAD_INDEX(p_index, size());
return _ptr[p_index];
}
template <bool p_initialize = true>
Error resize(Size p_size);
_FORCE_INLINE_ void remove_at(Size p_index) {
ERR_FAIL_INDEX(p_index, size());
T *p = ptrw();
Size len = size();
for (Size i = p_index; i < len - 1; i++) {
p[i] = std::move(p[i + 1]);
}
resize(len - 1);
}
Error insert(Size p_pos, const T &p_val) {
Size new_size = size() + 1;
ERR_FAIL_INDEX_V(p_pos, new_size, ERR_INVALID_PARAMETER);
Error err = resize(new_size);
ERR_FAIL_COND_V(err, err);
T *p = ptrw();
for (Size i = new_size - 1; i > p_pos; i--) {
p[i] = std::move(p[i - 1]);
}
p[p_pos] = p_val;
return OK;
}
_FORCE_INLINE_ operator Span<T>() const { return Span<T>(ptr(), size()); }
_FORCE_INLINE_ Span<T> span() const { return operator Span<T>(); }
_FORCE_INLINE_ CowData() {}
_FORCE_INLINE_ ~CowData() { _unref(); }
_FORCE_INLINE_ CowData(std::initializer_list<T> p_init);
_FORCE_INLINE_ CowData(const CowData<T> &p_from) { _ref(p_from); }
_FORCE_INLINE_ CowData(CowData<T> &&p_from) {
_ptr = p_from._ptr;
p_from._ptr = nullptr;
}
};
template <typename T>
void CowData<T>::_unref() {
if (!_ptr) {
return;
}
SafeNumeric<USize> *refc = _get_refcount();
if (refc->decrement() > 0) {
// Data is still in use elsewhere.
_ptr = nullptr;
return;
}
// We had the only reference; destroy the data.
// First, invalidate our own reference.
// NOTE: It is required to do so immediately because it must not be observable outside of this
// function after refcount has already been reduced to 0.
// WARNING: It must be done before calling the destructors, because one of them may otherwise
// observe it through a reference to us. In this case, it may try to access the buffer,
// which is illegal after some of the elements in it have already been destructed, and
// may lead to a segmentation fault.
USize current_size = *_get_size();
T *prev_ptr = _ptr;
_ptr = nullptr;
if constexpr (!std::is_trivially_destructible_v<T>) {
for (USize i = 0; i < current_size; ++i) {
prev_ptr[i].~T();
}
}
// Free memory.
Memory::free_static((uint8_t *)prev_ptr - DATA_OFFSET, false);
#ifdef DEBUG_ENABLED
// If any destructors access us through pointers, it is a bug.
// We can't really test for that, but we can at least check no items have been added.
ERR_FAIL_COND_MSG(_ptr != nullptr, "Internal bug, please report: CowData was modified during destruction.");
#endif
}
template <typename T>
Error CowData<T>::_fork_allocate(USize p_size) {
if (p_size == 0) {
// Wants to clean up.
_unref();
return OK;
}
USize alloc_size;
ERR_FAIL_COND_V(!_get_alloc_size_checked(p_size, &alloc_size), ERR_OUT_OF_MEMORY);
const USize prev_size = size();
if (!_ptr) {
// We had no data before; just allocate a new array.
const Error error = _alloc(alloc_size);
if (error) {
return error;
}
} else if (_get_refcount()->get() == 1) {
// Resize in-place.
// NOTE: This case is not just an optimization, but required, as some callers depend on
// `_copy_on_write()` calls not changing the pointer after the first fork
// (e.g. mutable iterators).
if (p_size == prev_size) {
// We can shortcut here; we don't need to do anything.
return OK;
}
// Destroy extraneous elements.
if constexpr (!std::is_trivially_destructible_v<T>) {
for (USize i = prev_size; i > p_size; i--) {
_ptr[i - 1].~T();
}
}
if (alloc_size != _get_alloc_size(prev_size)) {
const Error error = _realloc(alloc_size);
if (error) {
// Out of memory; the current array is still valid though.
return error;
}
}
} else {
// Resize by forking.
// Create a temporary CowData to hold ownership over our _ptr.
// It will be used to copy elements from the old buffer over to our new buffer.
// At the end of the block, it will be automatically destructed by going out of scope.
const CowData prev_data;
prev_data._ptr = _ptr;
_ptr = nullptr;
const Error error = _alloc(alloc_size);
if (error) {
// On failure to allocate, just give up the old data and return.
// We could recover our old pointer from prev_data, but by just dropping our data, we
// consciously invite early failure for the case that the caller does not handle this
// case gracefully.
return error;
}
// Copy over elements.
const USize copied_element_count = MIN(prev_size, p_size);
if (copied_element_count > 0) {
if constexpr (std::is_trivially_copyable_v<T>) {
memcpy((uint8_t *)_ptr, (uint8_t *)prev_data._ptr, copied_element_count * sizeof(T));
} else {
for (USize i = 0; i < copied_element_count; i++) {
memnew_placement(&_ptr[i], T(prev_data._ptr[i]));
}
}
}
}
// Set our new size.
*_get_size() = p_size;
return OK;
}
template <typename T>
template <bool p_initialize>
Error CowData<T>::resize(Size p_size) {
ERR_FAIL_COND_V(p_size < 0, ERR_INVALID_PARAMETER);
const Size prev_size = size();
if (p_size == prev_size) {
return OK;
}
const Error error = _fork_allocate(p_size);
if (error) {
return error;
}
if constexpr (p_initialize) {
if (p_size > prev_size) {
memnew_arr_placement(_ptr + prev_size, p_size - prev_size);
}
} else {
static_assert(std::is_trivially_destructible_v<T>);
}
return OK;
}
template <typename T>
Error CowData<T>::_alloc(USize p_alloc_size) {
uint8_t *mem_new = (uint8_t *)Memory::alloc_static(p_alloc_size + DATA_OFFSET, false);
ERR_FAIL_NULL_V(mem_new, ERR_OUT_OF_MEMORY);
_ptr = _get_data_ptr(mem_new);
// If we alloc, we're guaranteed to be the only reference.
new (_get_refcount()) SafeNumeric<USize>(1);
return OK;
}
template <typename T>
Error CowData<T>::_realloc(USize p_alloc_size) {
uint8_t *mem_new = (uint8_t *)Memory::realloc_static(((uint8_t *)_ptr) - DATA_OFFSET, p_alloc_size + DATA_OFFSET, false);
ERR_FAIL_NULL_V(mem_new, ERR_OUT_OF_MEMORY);
_ptr = _get_data_ptr(mem_new);
// If we realloc, we're guaranteed to be the only reference.
// So the reference was 1 and was copied to be 1 again.
DEV_ASSERT(_get_refcount()->get() == 1);
return OK;
}
template <typename T>
void CowData<T>::_ref(const CowData *p_from) {
_ref(*p_from);
}
template <typename T>
void CowData<T>::_ref(const CowData &p_from) {
if (_ptr == p_from._ptr) {
return; // self assign, do nothing.
}
_unref(); // Resets _ptr to nullptr.
if (!p_from._ptr) {
return; //nothing to do
}
if (p_from._get_refcount()->conditional_increment() > 0) { // could reference
_ptr = p_from._ptr;
}
}
template <typename T>
CowData<T>::CowData(std::initializer_list<T> p_init) {
Error err = resize(p_init.size());
if (err != OK) {
return;
}
Size i = 0;
for (const T &element : p_init) {
set(i++, element);
}
}
GODOT_GCC_WARNING_POP
// Zero-constructing CowData initializes _ptr to nullptr (and thus empty).
template <typename T>
struct is_zero_constructible<CowData<T>> : std::true_type {};